<u>Department of Mathematics and Statistics</u> <u>MCQs Bank of entry test for the Mphil (Mathematics)</u>

	MCQ's		Ans Key
1)	If $\frac{x^2 + 15}{(x+3)^2(x^2+3)} = \frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{Cx+D}{x^2+3}$, A	=	В
	A. $-\frac{1}{2}$	B. $\frac{1}{2}$	
2)	If $\frac{x^2+15}{(x+3)^2(x^2+3)} = \frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{Cx+D}{x^2+3}$, $B = \frac{A}{(x+3)^2} + \frac{B}{(x+3)^2} + \frac{Cx+D}{x^2+3}$	D. none of these	С
	A. $-\frac{1}{2}$ C. 2	B. $\frac{1}{2}$ D. none of these	
3)	If $\frac{x^2 + 15}{(x+3)^2(x^2+3)} = \frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{Cx+D}{x^2+3}$, $C =$	p. pone of these	A
4)	A1 C. 0	B. 1 D. none of these	В
4)	If $\frac{x^2+15}{(x+3)^2(x^2+3)} = \frac{A}{x+3} + \frac{B}{(x+3)^2} + \frac{Cx+D}{x^2+3}$, $D = \frac{A}{(x+3)^2} + \frac{Cx+D}{x^2+3}$		Ь
	A1 C. 0	B. 1 D. none of these	
5)	Derivative of $\frac{1}{x}$ with respect to x, is		В
	A. $\frac{1}{x^2}$	$\mathbf{B}\frac{1}{x^2}$	
6)	C. undefined Derivative of 2^x with respect to x , is	D. none of these	D
	A. $\frac{2^x}{\log 2}$	B. $-\frac{2^x}{\log 2}$	
7)	C. $\frac{2^x}{\log x}$	D. none of these	
7)	If $e^{x+y} = xy$, $\frac{dy}{dx} =$	B v(1 x)	C
	A. $\frac{y(1+x)}{x(y-1)}$ C. $y(1-x)$	B. $\frac{y(1-x)}{x(y+1)}$ D. none of these	
	$\frac{y(1-x)}{x(y-1)}$	D. Hone of these	

Discipline:

	D
B. 1	
D. none of these	С
B. $\frac{1}{a}\sin^{-1}(\frac{x}{a})$	
D. none of these	
	С
B. $x-1+\frac{1}{x+1}$	
D. none of these	
II	A
B. 0	
D. none of these	
	A
<u> </u>	
$B \cdot \left -\frac{1}{9} \right $	
D. none of these	
	С
B. 0	
D. none of these	
	A
B 2	
p. mone of these	D
	B. $x-1+\frac{1}{x+1}$ D. none of these B. 0 D. none of these B. $-\frac{14}{9}$ D. none of these B. 0 D. none of these

	T T		T
	$\begin{vmatrix} A \cdot \\ -\frac{2}{3} \end{vmatrix}$	$\left \frac{B}{3} \right $	
	3	3	
	C. 1	D. none of these	
	$\begin{bmatrix} C. \\ -\frac{1}{2} \end{bmatrix}$		
16)			A
10)	$\int_{0}^{1} \frac{e^{-x} + 1}{e^{-x}} dx =$		
	$\frac{1}{0}$ $e^{-\frac{\pi}{2}}$		
	A. <i>e</i>	B. 0	
	C. e^{-1}	D. none of these	
17)	$\int_{0}^{\frac{\pi}{4}} \cos^2 \theta d\theta =$		С
	$\int_{0}^{4} \cos^{2}\theta d\theta =$		
	A. π 1	Β. π	
	$\frac{1}{8} - \frac{1}{4}$	$\left \frac{\pi}{8} \right $	
	C. π 1	D. none of these	
	C. $\frac{\pi}{8} + \frac{1}{4}$	D. Hone of these	
10)			Α
18)	$\int_{\sqrt{2}}^2 \frac{u}{u^2 - 1} du =$		A
	A. $\ln \sqrt{3}$ C. $1-\ln \sqrt{3}$	B. ln 3	
	C. 1 In ./3	D. none of these	
10)	1 r		В
19)	$\int_0^1 \frac{e^x}{e^x + 1} dx =$		B
	$\int_{0}^{1} e^{x} + 1$		
	A. <i>e</i> +1	B. $_{1-}e+1$	
		B. $\ln \frac{e+1}{2}$	
		D. none of these	
	C. $\ln \frac{e-1}{2}$		
20)		<u> </u>	D
,	$y = 6x - x^2$		
	1 / \		
	+/		
	†/		
	4		
	0 1 2 3 4 5 6		
	The area of the shaded region is		
	A. 60	B. 30	
	C. 32	D. none of these	
21)	∞ ∞ 0 − y	L . L	A
	$\iint \frac{\epsilon}{y} dxdy =$		
	0 x y	L I.	
	A.1	B. 0	
	C1	D. none of these	

$\iint (x^2 + y^2) dx dy =$	and within a circle centered at the origin of radius 2,	C
A. 2π	Β. π	
$C. 4\pi$	D. none of these	
$\lim_{x \to \infty} \frac{4 - x^2}{x^2 - 1} =$	p. 10111 02 111101	В
A. 1	B. 1	
C. ∞	D. none of these	
$\lim_{x \to 0} \frac{x}{x} =$		В
A. 0	B. -3	
C. undefined	D. none of these	
$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4} =$		D
A. 1	B. -3	
C. 0	D. none of these	
$\frac{5x-4}{x^2-x-2} =$		D
A. 2 3	B. 2 3	
$\frac{1}{x-2} - \frac{1}{x+1}$	B. $\left -\frac{2}{x-2} + \frac{3}{x+1} \right $	
C. 2 + 3	D. none of these	
$\frac{1}{x+2} + \frac{1}{x-1}$		
If $\frac{3x+11}{x^2-x-6} = \frac{A}{x-3} + \frac{B}{x+2}$, $A =$		A
A. 4	B. -1	
C4	D. none of these	
If $\frac{3x+11}{x^2-x-6} = \frac{A}{x-3} + \frac{B}{x+2}$, $B =$		С
A. 1	B. -4	
C1	D. none of these	
If derivative of $f(x) + C$ is $-\frac{1}{x^2}$, $f(x) = \frac{1}{x^2}$	(x) =	A
A. 1	B. 1	
$\frac{1}{x}$	$\frac{-}{x}$	
$C\ln x^2$	D. none of these	
Derivative of 2^{-x} with respect to x ,		С
A. 2^{-x}	B. 2^{-x}	
$\log 2$	log x	
$C2^{-x} \log 2$	D. none of these	
3x+11		C

A. 4 1	B. 4 1	
A. $\frac{4}{x-3} + \frac{1}{x+2}$ C. $\frac{4}{x-3} - \frac{1}{x+2}$	B. $\left -\frac{4}{x-3} + \frac{1}{x+2} \right $	
C. 4 1	D. none of these	
$\left \frac{1}{x-3} - \frac{1}{x+2} \right $		
$32) \int (\ln x + c) dx =$		В
$A.$ $\frac{1}{-}$	B. $x \ln x - x + cx + C$	
$\begin{array}{c c} x \\ C. x \ln x + cx + C \end{array}$	D. none of these	
$33) \int xe^x dx =$	D. flone of these	A
$A. e^{x}(x-1) + C$	$B. e^{x}(x+1)+C$	
$C. xe^x - 1 + C$	D. none of these	
$\int \frac{1}{ax+b} dx =$		С
$\int ax + b$		
A. $-\frac{1}{(ax+b)^2} + C$ C. $\frac{1}{a}\ln(ax+b) + C$	B. $a \ln(ax+b) + C$	
C. $\frac{1}{-\ln(ax+b)+C}$	D. none of these	
35) $\int \frac{e^{\tan^{-1}x}}{1+x^2} dx = C+f, f =$		A
A. $e^{\tan^{-1}x}$	$\mathbf{B}. _{e^{-\tan^{-1}x}}$	
$C \cdot \ln e^{\tan^{-1} x}$	D. none of these	
36) If $y = \frac{x^2}{1+x}$, $\int y dx = C + f$, $f =$		С
$A. \frac{x^2}{2} + x - \ln(x+1)$	B. $x-1+\frac{1}{1+x}$	
C. $\frac{x^2}{2} - x + \ln(x+1)$	D. none of these	
$\frac{x^2}{1+x} =$		С
A. $x^2 + x$	B. $x+1-\frac{1}{1+x}$	
C. $x-1+\frac{1}{1+x}$	D. none of these	
38) $\int_{-1}^{1} (x^2 - x - 1) dx =$		В
A. <u>4</u>	B. <u>4</u>	
3	3	
$\left \mathbf{C} \cdot \right = \frac{3}{4}$	D. none of these	

$39) _{\mathbf{f}}^{2} 3x - 1$		С
$\int_{1}^{2} \frac{3x - 1}{3x} dx =$		
$A. 1 - \frac{\ln 3}{2}$	B. $1 + \frac{\ln 2}{3}$	
2		
C.	D. none of these	
10) 2		-
$\int \frac{40}{\sqrt{1-t}} dt =$		D
$\int_{0}^{\infty} \sqrt{4+t}$		
A. 1 C2	B. 0	
41) 0	D. none of these	С
$\int \sqrt{3u+4} \ du =$		
A. 14	B. 14	
$\frac{A}{3}$	B. $-\frac{14}{9}$	
	D. none of these	
$C. \frac{14}{9}$		
42) $\sqrt{3}$ x		В
$\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{4-x^2}} dx =$		
A. -1	B. 1	
C. 0	D. none of these	
$\int_{1}^{1} (2t-1)^{3} dt =$		В
$\int_{0}^{\infty} (2i - 1)^{n} di =$		
A1	B. 0	
C. 1	D. none of these	
$\int_{0}^{6} \frac{2+x}{2\sqrt{x}} dx =$		A
4 2 4 3	5	
$A. \frac{25}{3}$	B. $\frac{5}{3}$	
25		
$\left C. \right \frac{25}{9}$	D. none of these	
45) 3 1 dx =		С
$\int_{-3}^{3} \frac{1}{9+x^2} dx =$		
$ A. \pi$	B. 0	
$-\frac{1}{6}$		
$C. \frac{\pi}{6}$	D. none of these	
$\int_{0}^{1} e^{-x} dx =$		D
0	b.L.	
A.0 C.1	B1	
[C.]]	D. none of these	

47)	$\overset{\infty}{\mathbf{f}}\overset{\infty}{\mathbf{f}}e^{-y}$		D
7/)	$\iint \frac{e^{-x}}{-x} dxdy =$		D
	0 x Y		
	A1	B. 0	
10)	C. e	D. none of these	
48)	If D is the region above the x -axis and within a ci	ircle centered at the origin of radius 2,	С
	$\iint\limits_{D} (x^2 + y^2) dx dy =$		
	Α. π	$B. 2\pi$	
	C. 4π	D. none of these	
49)	If $[x]$ is the greatest integer not greater than x , $\lim_{x \to \frac{1}{2}}$	$\frac{1}{2}[x] =$	A
	A. 0	B. 1	
	C. 2	D. none of these	
50)	$\lim_{x \to \infty} \frac{\sin(3x)}{\sin(4x)} =$		С
	$\lim_{x\to 0} \frac{1}{\sin(4x)} =$		
	A. 4	B. 1	
	$\left[\frac{1}{3} \right]$		
		D. none of these	
	$C. \frac{3}{4}$. Hone of these	
51)	If A is bounded above and $s = Sup(A)$, for each	c > 0 there is at least one element a of A such	В
31)		$a>0$, there is at least one element a_0 or A such	Ь
	that		
	A. $a_0 > s + \varepsilon$	$B. a_0 > s - \varepsilon$	
	C. $a_0 < s - \varepsilon$	D. none of these	
52)	If $ x \le 0$, $x =$		С
	A. 1	B. ∞	
	C. 0	D. none of these	
53)	If limit of a sequence $(a_n)_{n=1}^{\infty}$ is l , $a_n \to l$ as		A
	$A. n \to \infty$	$B. \mid n \to 0$	
	$C. n \rightarrow 1$	D. none of these	
54)	The sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ is		В
	A. divergent	B. convergent	
	C. oscillating	D. none of these	
55)			В
	1 1,		
	A. 1	B. 0	
	C. ∞	D. none of these	
56)	$\log_3(243) =$		D
	A. 24	B. 6	
	A. 24 C. 8	D. none of these	

A bounded sequence of real nu	imbers	С
A. converges	B. diverges	
C. may converge	D. none of these	
A Cauchy sequence of real nur		D
A. not bounded	B. oscillating	
C. divergent	D. none of these	
The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is		С
A. convergent	B. =2	
C. divergent	D. none of these	
$[60) \text{If } a \le b \text{ and } b < c,$		C
A. $a = c$	B. $b = \frac{a+c}{2}$	
C. <i>a</i> < <i>c</i>	D. none of these	
The set of rational numbers is		A
A. countable	B. uncountable	
C. finite	D. none of these	
The interval [0,1[is	F 1/2	A
A. infinite	B. bounded	
C. finite	D. none of these	
[53] If $a < b$, the interval $]a,b]$ is		C
A. countable	B. unbounded	
C. not countable	D. none of these	
(54) If A is countable, $A \sim$		A
A. <i>N</i>	B. <i>Q</i>	
C. R	D. none of these	
The set of natural numbers is e	equivalent to	В
A.[0,1]	B. <i>Q</i>	
C. R	D. none of these	
A bounded monotonically deci		
A. infimum	B. suprimum	
C. 1 st term	D. none of these	
$\sum_{k=0}^{\infty} \frac{1}{k!} =$		C
A. ∞	Β. π	
C. <i>e</i>	D. none of these	

68)	The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is		A
	The series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is		
	A. convergent	B. divergent	
	C. undefined	D. none of these	
69)	A bijection f from N to W is $f(n) =$		В
	A. n+1	B. n-1	
	C. n	D. none of these	
70)	C. 11	D. Holle of these	С
, 0,	The function $f(n) = 2n-1$ is bijection from Z to	o the set of	
	A. natural numbers	B. even integers	
	C. odd integers	D. none of these	
71)	The function $f(x) = e^x$ is bijection:		A
	$A. R \rightarrow R^+$	$B. R^+ \to R$	
	A. $R \rightarrow R^+$ C. $R \rightarrow R$	B. $R^+ \to R$ D. none of these	
72)		$\varepsilon > 0$, there is at least one element a_1 of A such that	С
	A. $a_1 < i - \varepsilon$ C. $a_1 < i + \varepsilon$	B. $a_1 > i + \varepsilon$	
	$C \cdot a_1 < i + \varepsilon$	D. none of these	
73)	If d is a metric on $X(\neq \Phi)$, d:		В
	$A. X \rightarrow R$	$B. \mid X \times X \to R$	
	A. $X \to R$ C. $X \to X$	D. none of these	
74)	If d is a metric on $X(\neq \Phi)$, for all $x, y \in X$, do	(x, y) is	В
	A. positive	B. non negative	
	C. 0	D. none of these	
75)	If d is a metric on $X \neq \Phi$, for all $x, y \in X$, do	(x, y) is	D
	A. positive	B. negative	
	C. 0	D. none of these	
76)	If d is a metric on $X \neq \Phi$ and $x, y \in X$ be su		D
	A. positive	B. negative	
	C. undefined	D. none of these	
77)	If d is a metric on $X \neq \Phi$, for all $x, y \in X$, d		С
	Ad(y,x)	B. 0	
	C. d(y,x)	D. none of these	
78)	If d is a metric on $X(\neq \Phi)$, for all $x, y, z \in X$,	d(x,y) is	A
	$A. \le d(x, z) + d(z, y)$	B. < d(x,z) + d(z,y)	
	C. > d(x, z) + d(z, y)	D. none of these	

The function $f: R \to R^+$ defin		
A. not one to one	B. one to one	
C. decreasing	D. none of these	
The function $f: R^+ \to R$ define	$ed by f(x) = \ln x is$	В
A. decreasing	B. increasing	
C. constant	D. none of these	
The set R^+ is equivalent to		C
A.Q	B. Q ⁺	
C. <i>R</i>	D. none of these	
The interval [0,1] is equivalent	to	С
A. <i>Q</i>	B. Z	
C. [2,5]	D. none of these	
	$y = \sin x$, $y = 0$, $x = 0$ and $x = \pi$ is	A
A. 2	B. 0	
C. undefined	D. none of these	
The area bounded by the curves $y = \sin x$, $y = 0$, $x = 0$ and $x = 2\pi$ is		
A. 2	B. 0	
C. 4	D. none of these	
The interval $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ is equivalent	alent to	С
A. <i>Q</i>	B. Z	
C. <i>R</i>	D. none of these	
$f(x) = \cos x$ is a periodic funct	ion with period	A
$A.2\pi$	B. π	
C. π	D. none of these	
$\frac{1}{2}$		
If $a \le b$ and $c \le d$,		A
A. $a+c \le b+d$	B. a+c < b+d	
$C. a+c \ge b+d$	D. none of these	
If $a \le b$ and $c < 0$,		С
A. $ac \leq bc$	B. $ac = bc$	
C. $ac \ge bc$	D. none of these	
If $a \le b$ and $c > 0$,		A
A. $ac \le bc$	B. $ac \ge bc$	
C. $ac = bc$	D. none of these	

90)	1i	$\sin(2x) =$			D
		$\frac{111}{3x}$			
	A.	1	В.	0	-
	C.	3		none of these	-
		$\left \frac{1}{2}\right $			
91)	In	a metric space, a convergent sequence	1		A
		is Cauchy		is not Cauchy]
		is oscillating	D.	none of these	
92)	A	Cauchy sequence of real numbers is			C
	A.	unbounded	В.	divergent	1
	C.	convergent		none of these	
93)	A	convergent sequence of real numbers is			В
	Α.	unbounded	В.	Cauchy	-
		oscillating		none of these	1
94)		a metric space, a Cauchy sequence	•		В
		is convergent	В.	may not converge	
	C.	is oscillating	D.	none of these	
95)	T	he circumference to diameter ratio of a circle is			С
	A.	1	В.	le e	-
	C.	π	_	none of these	1
96)	T	The sequence $\left((-1)^n\right)_{n=1}^{\infty}$	•		D
	A.	converges to 1	В.	converges to 0	-
	C.	converges to −1		none of these	
97)	W	Which of the following is true			D
	A.	$\pi < e$	В.	$\pi = \frac{22}{}$	-
			_	7	
0.0		π is rational	D.	none of these	
98)	T.	the number π is			В
	A.	not real	В.	irrational	
		rational	D.	none of these	
99)	T	The number e belongs to			В
	A.	Q		Q'	
	C.	Z	D.	none of these	
100)	$\sum_{k=1}^{n}$	$\sum_{i=1}^{n} k =$			С
	A	n^2	B	n(n-1)	1
	4 1.		.ر	$\frac{n(n-1)}{2}$	
			_1		

	C. n(n+1)	D. none of these	
	$\frac{1}{2}$		
101)	The sequence $\left(n^{\frac{1}{n}}\right)_{n=1}^{\infty}$ is		В
	A. divergent	B. convergent	
	C. oscillating	D. none of these	
102)	If a convergent sequence $(a_n)_{n=1}^{\infty}$ consists of infinithe limit of the sequence	itely many distinct elements and $A = \{a_1, a_2, a_3,\}$,	С
	A. does not exist	B. is not limit point of A	
	C. is limit point of A	D. none of these	
103)		ely many distinct elements and $A = \{a_1, a_2, a_3,\}$, the	A
	$A. \in A$	B. <i>∉ A</i>	
	C. is undefined	D. none of these	
	If x_0 is an element of a metric space (X,d) and		В
	A. $\overline{B}(x_0;r)$	B. $B(x_0;r)$	
	$C. S(x_0; r)$	D. none of these	
	If x_0 is an element of a metric space (X,d) and		В
	$A. X - B(x_0; r)$	$\mathbf{B} \cdot \left X - \overline{B}(x_0; r) \right $	
•	$C. X - S(x_0; r)$	D. none of these	
106)	The sequence $\left(n^{\frac{1}{n}}\right)_{n=1}^{\infty}$ converges to		С
	A. 0	B1	
	C. 1	D. none of these	
.07)	If x_0 is an element of a metric space (X, d) and	$r > 0$, $\{x \in X : d(x, x_0) = r\} =$	С
	$A \cdot B(x_0; r)$	$B \cdot \overline{B}(x_0;r) $	
	$C. S(x_0; r)$	D. none of these	
(80	If x_0 is an element of a metric space $(X, d), r > 0$	0, $A = B(x_0; r)$ and $B = \overline{B}(x_0; r)$,	A
	A. $A \subseteq B$	B. $B \subseteq A$	
0.51	C. A=B	D. none of these	
L	If x_0 is an element of a metric space (X, d) , $r > 0$		С
	A. $S = B$	B. $B \subseteq S$	
	$C. S \subseteq B$	D. none of these	

110)	If x_0 is an element of a metric space (X, d) and	$r > 0, \{x \in X : d(x, x_0) \neq r\} =$	D
	A. $X - B(x_0; r)$	B. $X - \overline{B}(x_0; r)$	
	C. $X \cup S(x_0; r)$	D. none of these	
111)	The limit of the sequence $\left(\frac{n^2 - 3n + 1}{2n^2 + 3n - 1}\right)_{n=1}^{\infty}$ is		D
	A. $\frac{-1}{2}$	B. 0	
112)	C. $ -1 $	D. none of these	A
112)	If a relation f is such that $a = b \Rightarrow f(a) = f(b)$	then f is	А
	A. a function	B. onto	
	C. one to one	D. none of these	
113)	If a function f is such that $f(a) = f(b) \Rightarrow a = b$	then f is	С
	A. a function	B. onto	
	C. one to one	D. none of these	
114)	If $f: A \to B$ is a function, $Dom(f)$		A
	$A. = A$ $C. \supset A$	B. $\subset A$ D. none of these	
	<u> </u>	D. none of these	
115)	If $f: A \to B$ is a function, $Range(f)$		В
	$A. = B$ $C. \subseteq A$	B. $\subseteq B$ D. none of these	
116)	If $f: A \to B$ is a function and $a \neq b \Rightarrow f(a) \neq f(a)$	(b), f is	A
	A. one to one	B. onto	
	C. bijection	D. none of these	
117)	If $f: A \rightarrow B$ is a function such that different elembe	nents of A have different images in B , f is said to	С
	A. bijection	B. onto	
	C. one to one	D. none of these	
118)	If $f: A \rightarrow B$ is a function such that $Range(f) \subset$		A
	A. into	B. onto	
	C. bijection	D. none of these	
119)	If $f: A \rightarrow B$ is a function such that $Range(f) = A$	B, f is said to be	В
	A. into	B. onto	
	C. bijection	D. none of these	
120)	If $f: A \to B$ is a function and such that $A_1 \subseteq A$,	the function $f_1: A_1 \to B$ defined by	С

	$f_1(a) = f(a)$ for all $a \in A_1$, is called		
	A. extension of f on A_1	B. subset of A	
	C. restriction of f on A_1	D. none of these	
121)	For two non-empty sets A and B , the set $\{(a,b)\}$		A
	A. A and B	B. B and A	_
122)	C. AB For two non-empty sets A and B , the Cartesian	D. none of these a product of A and B is denoted by	С
	A. AB	B. $B \times A$	
	$C. A \times B$	D. none of these	
123)	If $A \times B$ is the Cartesian product of A and B,	$ A \times B $ is	В
	A. > A B	B. = A B	
	C. < A B	D. none of these	
124)	$\sum_{k=0}^{n} \binom{n}{k} =$		В
	A. 2^{-n}	B. 2^n	
	C. 2n	D. none of these	
125)	Integral of e^{x^2} w.r.t. x , is		D
	A. $\frac{e^{x^2}}{2x}$	B. $2xe^{x^2}$	
	C. $\chi^2 e^{\chi^2 - 1}$	D. none of these	
126)	An infinite series		В
	A. is convergent	B. may converge	
	C. is divergent	D. none of these	
127)	An infinite sequence		В
	A. is divergent	B. may converge	
	C. is convergent	D. none of these	
128)	If $a < b$, $\frac{a+b}{2}$ is		D
	A. lesser than a	B. greater than <i>b</i>	
	C. equal to ab	D. none of these	
129)	A decreasing sequence		В
	A. is divergent	B. may diverge	_
120	C. is convergent	D. none of these	D
130,	If $a < b$, $a^2 + b^2$ is		В
	A. lesser than 2ab	B. greater than 2ab	

C. equal to 2ab	D. none of these	
The equation of the line pa	ssing through origin at an inclination of $\frac{\pi}{4}$, is	В
A. $x = 2y$	$\mathbf{B} \cdot x = y$	
$C. \ 2x = y$	D. none of these	
The equation of the line passing through (0,3) at an inclination of $\frac{\pi}{4}$, is		С
A. $x - 3 = y$	$\mathbf{B.} \mid -3x = y$	
C. $x+3=y$	D. none of these	
If $f(x) = \frac{x}{2}$, $f^{-1}(1) =$		С
A. 0	B. 1	
C. 2	D. none of these	
The inverse relation of a fu	nction, is a function iff the function is	С
A. onto	B. one to one	
C. bijective	D. none of these	
If $a > 0$ and $ x < a$,		C
A. x=a	B. $a < x < -a$	
Ca < x < a	D. none of these	
If S is the solution set of t	he relation $ x = 5$, $S =$	A
A. {-5,5}	B. [-5,5]	
C.] – 5, 5[D. none of these	
For any $x, y \in R$, $ x + y $ is	S	A
$ A. \le x + y $	$\mathbf{B}.\left <\left x\right +\left y\right $	
$C. \ge x + y $	D. none of these	
	$\left(\frac{1}{n^2+2}\right)_{n=1}^{\infty}$, is the number	С
A. 1	B. 1	
$\overline{2}$	3	
C. 0	D. none of these	
Suprimum of the sequence	$\{\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \dots \}$, is the number	A
A. 2	$B.\sqrt{2}$	
C. ∞	D. none of these	
	such that $A \subseteq B$, $\inf(A)$ is	A

$A. \ge \inf(B)$	$B. \leq \inf(B)$	
$C. = \inf(B)$	D. none of these	
141) If A and B are two sets such the	L L	A
$A. \le Sup(B)$	$B. \ge Sup(B)$	
C. = Sup(B)	D. none of these	
142) If A and B are two sets such the	I I	D
A. finite	B. infinite	
C. 0	D. none of these	
143) Which of the followings is not tru	ue	D
A. $Z \subset Q$	B. $Q \subset R$	
$C.W \subset Z$	D. none of these	
Domain of the function $f(x) = -\frac{1}{2}$	$\frac{1}{\sqrt{4-x^2}}$, is the set	В
A. [-2,2]	B.]-2,2[
C. {2,-2}	D. none of these	
If $f(x) = \frac{x}{2} - 3$, $f^{-1}(x) = \frac{2}{x - 6}$	B. $2x-6$	
C. $2x+6$	D. none of these	
146) If $x = 10^y$, $y =$		D
A. 1	B. 1	
$\overline{\ln(10)}$	$\overline{\ln(x)}$	
C. <i>e</i>	D. none of these	
147) If $ x-3 = 3-x$,		D
A. $x > 3$	B. $x = 3$	
C. $x-3=0$	D. none of these	
148) $\ln x$ is undefined for		D
A. $x > 0$	B. $x = 10$	
C. x = e	D. none of these	
The real line R is a metric space	under the metric $d_0: R \times R \to R$ defined as $d_0(x, y) =$	В
A. x+y	B. $ x-y $	

$= \frac{1}{2} $	ual metric d_0 , if $A = N$ and $B = \left\{ n - \frac{1}{n} : n \in N - \{1\} \right\}$, $d(A, B)$	
A.[0	B. 1	
C. ∞	D. none of these	
$\int_{-\infty}^{\infty} e^{-x^2} dx =$		С
A. $\frac{\sqrt{\pi}}{2}$	Β. π	-
C. $\sqrt{\pi}$	D. none of these	
2) The function $f(x) = x$ is called		В
A. a linear function	B. an identity function	
C. a quadratic function	D. none of these	
The notation $y = f(x)$ was invented	ed by	A
A. Euler	B. Leibnitz	
C. Newton	D. none of these	
4) The graph of a linear equation is alv	ways a	В
A. Parabola	B. Straight line	
C. Cycle	D. none of these	
5) The linear function $f(x) = ax + b$ i	s identity function if	В
A. $a \neq 0, b = 1$	B. $a = 1, b = 0$	
C. $a = 1, b = 1$	D. none of these	
6) The notation $f(x)$ was invented by	y	С
A. Leibnitz	B. Lagrange	
C. Newton	D. none of these	
$7) \int (ax+b)^n dx =$		С
$A. n(a^{n-1}x+b)$	B. $\frac{1}{(ax+b)^{n+1}} + C$	_
	B. $\frac{1}{n+1}(ax+b)^{n+1}+C$	
C. $\frac{1}{a(n+1)}(ax+b)^{n+1} + C$	D. none of these	
l I	ncrement of x . It is denoted by δx which is	A
A. Positive or negative	B. Negative only	1
C. Positive only	D. none of these	
9) If $\frac{d}{dx}(f(x)+C) = \operatorname{Sec}^{2}(3x), f(x) =$	=	В
A. $tan(3x)$	B. $\frac{1}{3}\tan(3x)$	1
	$\left \frac{1}{3} \tan(5x) \right $	

C. $3\tan(3x)$	D. none of these	
$\lim \frac{f(x) - f(a)}{\lim \frac{f(x) - f(a)}{h(a)}} = $		A
$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$		
A. $f'(a)$	B. $f'(x)$	
C. f(0)	D. none of these	
161) If $\frac{d}{dx}(f(x) + C) = x^{n-1}, f(x) =$		D
$A. _{\chi^n}$	B. nx^n	
$C. x^{n-2}$	D. none of these	
162) $\log_a a = ?$		В
A. <i>a</i>	B. 1	
A. <i>a</i> C. 0	D. none of these	
163) If $y = \sinh^{-1}(ax+b)$, $\frac{dy}{dx} =$		В
A. 1	B. <i>a</i>	
$a\sqrt{1+(ax+b)^2}$	$\sqrt{1+(ax+b)^2}$	
C. 1	D. none of these	
A. $\frac{1}{a\sqrt{1+(ax+b)^2}}$ C. $\frac{1}{\sqrt{1+(ax+b)^2}}$		
164) If $y = e^{-ax}$, $\frac{d^n y}{dx^n} =$		С
A. $a^n y$	B. $(-a)^{-n} y$	
C. $(-a)^n y$	D. none of these	
C. $(-a)^n y$ 165) If $y = e^{-ax}$, $y \frac{dy}{dx} =$, ,	D
A. $-ae^{2ax}$	B. e^{-2ax}	
	$\left -{a} \right $	
C. ae^{-2ax}	D. none of these	
166) $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f'(0) + \dots \text{ is ca}$	lled	A
A. Maclaurin's series expansion	B. Taylor's series expansion	
C. Taylor's theorem	D. none of these	
$167) 1 - x + x^2 - x^3 + \dots =$		В
A1	B. 1	
1+x	1+x	
C. 1	D. none of these	
1-x		

A. $f(x_2) > f(x_1)$ whenever $x_2 > x_1$	B. $f(x_2) > f(x_1)$ whenever $x_2 < x_1$	
C. $f(x_2) < f(x_1)$ whenever $x_2 > x_1$	D. none of these	
1 2 2		С
f is said to be decreasing function on a ,	$b[$ if for $x_1, x_2 \in]a, b[$	
A. $f(x_2) > f(x_1)$ whenever $x_2 > x_1$	B. $f(x_2) > f(x_1)$ whenever $x_2 < x_1$	
C. $f(x_2) < f(x_1)$ whenever $x_2 > x_1$	D. none of these	
0) A point where first derivative of a function	is zero, is called	A
A. Stationary point	B. Corner point	
C. Point of concurrency	D. none of these	
1) $f(x) = \sin x$ is		С
A. An even function	B. A linear function	
C. An odd function	D. none of these	
The maximum value of the function $f(x)$:	$=x^2-x-2$ is	В
A. 9	B. 9	
$ \frac{1}{4}$	$\left \begin{array}{c} -\frac{\pi}{4} \end{array} \right $	
C. $\frac{9}{2}$	D. none of these	
3) $\frac{d}{dx}(\cos x) - \frac{d^2}{dx^2}(\sin x) =$		A
A. 0	B. 2sin <i>x</i>	
C. 2cos x	D. none of these	
4) If $f(x) = x^3 + 2x + 9$, $f''(x) =$		С
A. 0	B. $3x^2$	
C. 6 <i>x</i>	D. none of these	
$\frac{d}{dx}(\sqrt{x} - \frac{1}{\sqrt{x}})^2 =$		В
A. $1+\frac{1}{x^2}$	B. $1 - \frac{1}{x^2}$	
$C. \sqrt{1 - \frac{1}{x^2}}$	D. none of these	
6) At $x = 0$, the function $f(x) = 1 - x^3$ has	<u> </u>	С
A. Maximum value	B. Minimum value	

A. cos	\sqrt{x}	B. $\cos \sqrt{x}$	
$\sqrt{\chi}$	 c	$\sqrt{2\sqrt{x}}$	
	$\cos\sqrt{x}$	D. none of these	
$8) y = x^x$	has the value		В
A. Mini	mum at x = e	B. Minimum at $x = \frac{1}{e}$	
C. Maxi	imum at $x = e$	D. none of these	
The de	gree of the differential equation $\frac{d^2x}{dt^2}$	$+2x^3 = 0 $ is	В
A.	0	B. 1	
C.	2	D. none of these	
0) The ord	der and degree of differential equation	on $\frac{d^3x}{dt^3} + 4\sqrt{(\frac{dy}{dx})^3 + y^2} = 0$ are respectively	A
A.	3 and 2	B. 2 and 3	
C.	3 and 3	D. none of these	
1) The dif	fferential equation $2\frac{dy}{dx} + x^2y = 2x + \frac{dy}{dx}$	-3, y(0) = 5 is	A
A.	linear	B. nonlinear	
C.	linear with fixed constants	D. none of these	
2) The pa	rtial differential equation $\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + u \frac{\partial \mathbf{u}}{\partial \mathbf{x}} =$	$= \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} \text{ is a}$	D
A.	Linear equation of order 2	B. Non linear equation of order 1	
C.	Linear equation of order 1	D. none of these	
3) Consider $t=3$ is	ler the following differential equation	$\frac{dy}{dt} = 5y$, initial condition $y=2$ at $t=0$, the value pf y at	С
1-5 15			

	C.	$2e^{-15}$	D.	none of these	
184)) T	the following differential equation $3(\frac{d^2y}{dt^2})+4(\frac{dy}{dt})^3$	 	$y^2 + 2 = x$	В
	A.	Degree=2, order=1	В.	Degree=1, order=2	
	C.	Degree=4, order=3	D.	none of these	
185)) T	he order of the differential equation $\left(\frac{d^2y}{dt^2}\right) + \left(\frac{dy}{dt}\right)^3$			В
	A. C.	1 2	В. D	2 none of these	
186)	T	the differential equation $\frac{d^2y}{dx^2} + 16y = 0$ for $y(x)$ with $y = \frac{\pi}{2} = -1$ has	h t	we boundary conditions $\frac{dy}{dx}(x=0) = 1$ and $\frac{dy}{dx}$	A
	A.	No solution	В.	Exactly one solution	
	C.	Exactly two solutions	D.	none of these	
187)	A	differential equation is considered to be ordinary	y i	f it has	С
	A.	one dependent variable	В.	more than one dependent variable	
	C.	one independent variable	D.	none of these	
188)	P	DE has independent variable	1		A
	A.	More than 1	В.	Less than 1	
	C.	1	D.	none of these	
189)	In	homogeneous first order linear constant coeffici	ien	t ordinary DE is	В
	A.	$\frac{\partial u}{\partial x} = 0$	В.	$\frac{\partial u}{\partial x} = cu + x^2$	

($\frac{\partial u}{\partial x} = \frac{c}{u} + x^2$	D. none of these	
190)	The P.D.E $\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = f(x, y)$; is known as		A
1	A. Laplace equation	B. Poisson equation	
Ō	C. Wave equation	D. none of these	
191)	The solution of a differential equation which is no	ot obtained from the general solution is known as:	В
1	A. Particular solution	B. Singular solution	
Ō	C. Auxiliary solution	D. none of these	
192)	The differential equation $\frac{dy}{dx} = y^2$ is:		A
7	A. Non-linear	B. Linear	
	C. Quasilinear	D. none of these	
193)	The DE formed by $y = acosx + bcosx + 4$ where a and	b are arbitrary constants is:	С
1	A. $\left(\frac{d^2y}{dx^2}\right) + y = 0$	$\frac{d^2y}{dx^2}-y=0$	
($(\frac{d^2y}{dx^2}) + y = 4$	D. none of these	
194)	The equation $a_0 x^{2+} \frac{d^2 y}{dx^2} + a_1 x \frac{dy}{dx} + a_2 y = \varphi(x)$ is called	ed:	В
1	A. Legendre's linear equation	B. Cauchy's linear equation	
	C. Simultaneous equation	D. none of these	
195)	Solution of the DE $\frac{dy}{dx}$ = $sin(x+y) + cos(x+y)$, is		D

A.	$Log/I + tan\frac{(x+y)}{2}/=y+c$	B. $Log/2+sec\frac{(x+y)}{2}/=x+c$	
C.	Log / 1 + tan(x+y) / = y + c	D. none of these	
196) If $y=a$	cos(log x) + b sin(log x), then		В
A.	$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$	$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0$	
C.	$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = 0$	D. none of these	
197) If <i>y=sii</i>	$n(a \sin^{-1} x)$, then		A
A.	$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + a^2y = 0$	B. $(1-x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - a^2y = 0$	
C.	$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$	D. none of these	
198) The DI	E of the family of curves $y^2 = 4a(x + is)$		В
A.	$y^2 = 4\frac{dy}{dx}\left(x + \frac{dy}{dx}\right)$	B. $y^2 \left(\frac{dy}{dx}\right)^2 + 2xy \frac{dy}{dx} - y^2 = 0$	
C.	$y^2 \frac{dy}{dx} + 4y = 0$	D. none of these	
199) Inverse	derivative of sin x is:		A
A.	$\frac{1}{\sqrt{1-x^2}}$	B. $\frac{1}{\sqrt{1+x^2}}$	
C.	$\frac{-1}{\sqrt{1-x^2}}$	D. none of these	
200)	Inverse derivative of cos x is:	· •	С
A.	$\frac{1}{\sqrt{1-x^2}}$	B. $\frac{1}{\sqrt{1+x^2}}$	

	$\frac{-1}{\sqrt{1-x^2}}$	D. none of these	
201)	If $y = tan^{-1} x^{3/2}$, then $\frac{dy}{dx} =$		A
1	A. $\frac{3\sqrt{x}}{2(1+x^3)}$	B. $\frac{2\sqrt{x}}{(1+x^3)}$	
	$\frac{3\sqrt{x}}{2(1-x^3)}$	D. none of these	
202)	The equation of the curves, satisfying the DE $\frac{d^2y}{dx^2}$ and having the slope of tangent at $x=0$ as 6 is	$(x^2 + 1) = 2x \frac{dy}{dx}$ passing through the point (0,1)	В
1	A. $y^2 = 2x^3 + 6x + 1$	B. $y = 2x^3 + 6x + 1$	
	$y^2 = x^3 + 6x + 1$	D. none of these	
	A particle, initially at origin moves along x-axis a particle to traverse a distance of 96 units is:	ccording to the rule $\frac{dx}{dt} = x+4$. The time taken by the	С
	A. ln 5	B. $\log_5 e$	
	C. 2 ln 5	D. none of these	
204)	If $y = cos^{-1}(\ln x)$, then the value of $\frac{dy}{dx}$ is		В
	$\frac{1}{x\sqrt{1-(\ln x)^2}}$	B. $\frac{-1}{x\sqrt{1-(\ln x)^2}}$	
	$\frac{-1}{x\sqrt{1+(\ln x)^2}}$	D. none of these	

205)	If	$x=2 \ln \cot(t)$ and $y=\tan(t)+\cot(t)$, the value of	of $\frac{a}{a}$	$\frac{y}{x}$ is	A
	A.	cot(2t)	В.	tan(2t)	
	C.	cos(2t)	D.	none of these	
206)	S	plution of the DE $ln(\frac{dy}{dx}) = ax + by$ is			A
	A.	$-\frac{1}{b}e^{-by} = \frac{1}{a}e^{ax} + c$	В.	$\frac{1}{b}e^{-by} = \frac{1}{a}e^{ax} + c$	
	C.	$\frac{1}{b}e^{-by} = -\frac{1}{a}e^{ax} + c$	D.	none of these	
207)			(y-	$(-c)^2 = cx$, where c is an arbitrary constant, then the	A
		der and degree of differential equation is	_	2.1	
	A.	1, 2	B.	2, 1	
	C.	1, 3	D.	none of these	
208)	So	Dolution of $(x^2 \sin^3 y - y^2 \cos x) dx + (x^3 \cos y \sin^2 y)$, _	$2y\sin x)dy=0\text{ is}$	С
	A.	$(x^3 \sin^3 y/3) = c$	В.	$x^3 \sin^3 y = y^2 \sin x + c$	
	C.	$(x^3 \sin^3 y/3) = y^2 \sin x + c$	D.	none of these	
209)	So	olution of $\frac{x dy}{x^2 + y^2} = \left(\frac{y}{x^2 + y^2} - 1\right) dx$ is			С
	A.	$x - \tan^{-1} \frac{y}{x}$	В.	$\tan^{-1}\frac{y}{x} = c$	
	C.	$x \tan^{-1} \frac{y}{x} = c$	D.	none of these	
210)	S	olution of $(y + x^{\sqrt{xy}}(x+y))dx + (y^{\sqrt{xy}}(x+y))$	_	x)dy = 0 is	D
	A.	$x^2 + y^2 = 2 \tan^{-1} \sqrt{\frac{y}{x} + c}$	В.	$x^2 + y^2 = 4 \tan^{-1} \sqrt{\frac{y}{x} + c}$	

			1	
	C.	$x^2 + y^2 = \tan^{-1}\sqrt{\frac{y}{x} + c}$	D. none of these	
211	Solution	on of the DE $\frac{dy}{dx} + 2xy = y$ is		A
	A.	$y = ce^{x-x^2}$	$y = ce^{x^2} - x$	
	C.	$y = ce^x$	D. none of these	
212	Solution	on of the differential equation $\frac{dy}{dx} = \sin(x + \frac{dy}{dx})$	$(y) + \cos(x + y)$, is	D
	A.	$\log 1 + \tan \frac{(x+y)}{2} = y + c$	B. $\log 2 + \sec \frac{(x+y)}{2} = x + c$	
	C.	$\log/1 + \tan(x+y)/ = y + c$	D. none of these	
213) The B	lasius equation $\frac{d^3f}{d\eta^3} + \frac{f}{2}\frac{d^2f}{d\eta^2} = 0$ is a	<u> </u>	В
	A.	Second order non linear differential equation	B. Third order non linear ordinary differential equation	
	C.	Third order linear ordinary differential equation	D. none of these	
214	The ge	eneral solution of DE $\frac{dy}{dx} = \cos(x + y)$ with	a c as a constant is	D
	A.	$y + \sin(x + y) = x + c$	B. $tan\left(\frac{x+y}{2}\right) = y + c$	
	C.	$\cos\left(\frac{x+y}{2}\right) = x + c$	D. none of these	
215	The so	olution of the initial value problem $\frac{dy}{dx} = -2x^2$	xy; y(0) = 2 is	В
	A.	$1 + e^{-x^2}$	B. $2e^{-x^2}$	

	C.	$1 + e^{x^2}$	D.	none of these	
216)	T	the solution of ODE $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$ is	<u>I</u>		A
	A.	$y = c_1 e^{-3x} + c_2 e^{2x}$	В.	$y = c_1 e^{3x} + c_2 e^{2x}$	
	C.	$y = c_1 e^{3x} + c_2 e^{-2x}$	D.	none of these	
217)	T	he solution for the differential equation $\frac{dy}{dx} = x^2$.	y v	with two condition that $y=1$ at $x=0$	С
	A.	$2e^{\frac{x^2}{2}}$	B.	$3e^{\frac{x}{2}}$	
	C.	$e^{\frac{x^2}{2}}$	D.	none of these	
218)	T	he solution of $\frac{dy}{dx} = -\frac{x}{y}$ with initial condition $y(x)$	1)=	$\sqrt{3}$ is	С
	A.	$x^3 + y^3 = 4$	В.	y = 4ax	
	C.	$x^2 + y^2 = 4$	D.	none of these	
219)	W	Which of these is the solution of differential equat	ion	$\frac{dx}{dt} + 3x = 0$	A
	A.	$2e^{-3t}$	В.	e^{-3t}	
	C.		D.	none of these	
220)	T1	he general solution of DE $\frac{dy}{dx} = \frac{y}{x}$ is			В
	A.	log y = kx	B.	y=kx	
	C.	$y = \frac{k}{x}$	D.	none of these	
	!	i			·

221)	Ir	stegrating factor of DE $\cos \frac{dy}{dx} + y \sin x = 1$ is		В
	A.	sin x	B. sec x	-
	C.	tan x	D. none of these	_
222)	If	2xy dx + P(x, y)dy = 0 is exact then $P(x, y)$ is		D
	A.	x - y	B. $x + y$	
	C.	$x-y^2$	D. none of these	
223)	A	differential equation of first degree		В
	A.	Is of first order	B. May or may not be linear	
	C.	Is always linear	D. none of these	_
224)	A	general solution of an n^{th} order differential equat	ion contains	В
	A.	n-1 arbitrary constants	B. <i>n</i> arbitrary constants	_
	C.	n+1 arbitrary constants	D. none of these	
225)	T	he differential equation $Mdx + Ndy = 0$ is defined	d as an exact differential equation of	D
	A.	$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$	B. $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$	
	C.	$\frac{\partial M}{\partial y} = -\frac{\partial N}{\partial x}$	D. none of these	
226)	Т	he order of the differential equation $\frac{\partial^2 y}{\partial x^2} + y^2 = x$	$c + e^x$ is	A
	A.		B. 3 D. none of these	1
227)	<u>.</u>		the same integrating factor'. This statement is	С

	A.	Never true	B. May be true	
	C.	Always true	D. none of these	
228)	If pu	$\frac{dy}{dx} = \frac{f(x,y)}{\varphi(x,y)}$ is a homogeneous DE the atting	en it can be made in the form ''separable in variables'' by	С
	A.	$y^2 = vx$	B. $x^2=vy$	
	C.	y=vx	D. none of these	
229)	Tł	he differential equation $\frac{dy}{dx} + Py = Qy$	n^n , $n \ge 2$ can be reduced to linear form by substituting	D
	A.	$z=y^{n-1}$	$B. \qquad x = y^{n+1}$	
	C.	$x=y^{I-n}$	D. none of these	
230)	Tł	the differential equation $(y-2x^3)dx$	-x(1-xy)dy = 0 becomes exact on multiplication by	В
	A.	$\frac{1}{x}$	B. $\frac{1}{x^2}$	
	C.	$\frac{1}{x^3}$	D. none of these	
231)	If	the DE $f(x,y)dx + x\sin y dy = 0$ is	exact then $f(x, y)$ equals	В
	A.	cos y	B. $-cos(y) + x^2$	
	C.	–sin y	D. none of these	
232)	Tì	the differential equation $x \frac{dy}{dx} = x - y$ is	1 1	С
	A.	Exact	B. Linear	
	C.	Both A and B	D. none of these	

233) The	general solution of the equation $x' + 5x =$: 3 is	С
A.	$x(t) = \frac{3}{5} + e^{-5t}$	$x(t) = 3 + C \sin 5t$	
C.	$x(t) = \frac{3}{5} + Ce^{-5t}$	D. none of these	
234) A so	lution of the initial value problem $y' + 8y$	$= 1 + e^{-6t} $ is	В
A.	$x(t) = \frac{1}{8} + \frac{1}{2}e^{6t} - \frac{5}{8}e^{8t}$	B. $x(t) = \frac{1}{8} + \frac{1}{2}e^{-6t} - \frac{5}{8}e^{-8t}$	3t
C.	$x(t) = 4 - e^{2t} + 3e^{8t}$	D. none of these	
235) Two	linearly independent solutions of the equa	tion y'' + y' - 6y = 0 are	A
A.	e^{-3x} and e^{2x}	B. e^{-2x} and e^{3x}	
C.	e^{-x} and e^{6x}	D. none of these	
$ \begin{array}{c c} \hline 236) & \int_{-\infty}^{0} e^{-} \end{array} $	$dx^2 dx =$		A
A. $\frac{\sqrt{2}}{2}$	$\frac{\pi}{2}$	Β. π	
C. $\sqrt{\jmath}$		D. none of these	
237) A pa	rticular solution for the differential equati	$\operatorname{on} y'' + 2y' + y = 3 - 2\sin x \operatorname{is}$	В
A.	$A + Bx^2 + C\cos x + D\sin x$	B. $A + B \cos x + C \sin x$	
C.	$A + Bx \cos x + Cx \sin x$	D. none of these	
238) The	solution of the initial value problem x^2y''	-xy' - 3y = 0, $y(1) = 1$, $y'(1) = -2$ is $y = -2$	A
A.	$\frac{5}{4}x^{-1} - \frac{1}{4}x^3$	B. $\frac{1}{4}x + \frac{3}{4}x^{-3}$	

C.	$\frac{5}{4}e^{-x} - \frac{1}{4}e^{3x}$	D. none of these	
239) The d	differential equation $x'' + 2x' - 5x = \sin x$	t is equivalent to the system	A
A.	$x' = y , y' = 5x - 2y + \sin t$	$B. x' = 2x - 5y , y' = \sin t$	
C.	$x' = y , y' = 2x - 5y + \sin t$	D. none of these	_
	ystem of differential equation $x'' = -\frac{3}{x^2}$, sting of	$\frac{y}{x^2+y^2}$, $y'' = -\frac{y}{x^2+y^2}$ is equivalent to a 1 st order system	С
A.	Two equations	B. Three equations	
C.	Four equations	D. none of these	_
recurs	sion relation	$y'' + xy' + y = 0$ is of the form $\sum_{n=0}^{\infty} C_n X^n$ has	В
A.	$C_{n+2} + C_{n+1} + C_n = 0, n \ge 0$	B. $(c+2)C_{n+2} + C_n = 0, n \ge 2$	
C.	$nc_{n+1}-c_n=0, n\geq 1$	D. none of these	
242) The d	lifterential equation $xy'' + (x-2)y' + y$	v = 0 has a solution of the form	С
A.	$y = x^2 \sum_{n=0}^{\infty} c_n \ x^n, c_0 \neq 0$	B. $y = x^{1/2} \sum_{n=0}^{\infty} c_n x^n, c_0 \neq 0$	
C.	$y = x^3 \sum_{n=0}^{\infty} c_n x^n, c_0 \neq 0$	D. none of these	-
		1)y' + 2y = 0, can be represented as a power series al to	В
A.	0	B. 1/2	
C. 1		D. none of these	

The pa	artial fraction decomposition of $\frac{1}{(s-1)^{n}}$	$\frac{s+4}{(-1)^2(s^2+4)}$ is	E
A.	$\frac{A}{(s-1)^2} + \frac{B_s + C}{s^2 + 4}$	B. $\frac{A}{s-1} + \frac{B}{(s-1)^2} + \frac{C_s + D}{s^2 + 4}$	
C.	$\frac{A}{s-1} + \frac{B}{(s-1)^2} + \frac{C}{s^2 + 4}$	D. none of these	
Which	n of the following equations can be	rearranged into separable equations?	F
A.	(x+y)y'=x-y	$B. y' - e^y = e^{x=y}$	
C.	y' = ln(xy)	D. none of these	
A bod	y with mass $m = \frac{1}{2}ka$ is attached	to the end of a spring that is stretched 2m by a force of 100N	A
It is so	L	to the end of a spring that is stretched $2m$ by a force of $100N$. $s=1$ m and initial velocity $v_0 = -5$ m/s. The position function $s=1 + 2m$ B. $s=1$	A
It is see of the	et in motion with initial position x_0 body is given by	$v_0 = 1$ m and initial velocity $v_0 = -5$ m/s. The position function	<i>A</i>
It is see of the A. $x(t)$	et in motion with initial position x_0 body is given by	$v_0 = 1$ m and initial velocity $v_0 = -5$ m/s. The position function $v_0 = -5$ m/s.	
It is see of the A. $x(t)$	bet in motion with initial position x_0 body is given by	B. $x(t) = \cos 5t - \sin 5t$ D. none of these	
It is see of the A. $x($ C. $x(t)$ The approximately A. Ae^{-t}	bet in motion with initial position x_0 body is given by	B. $x(t) = \cos 5t - \sin 5t$ D. none of these y_p of the equation $y'' + 2y' + y = e^{-t}$ is	
It is see of the A. $x(t)$ C. $x(t)$ The ap A. Ae^{t} C. At^{2}	et in motion with initial position x_0 body is given by $f(t) = \cos 10t - \frac{1}{2}sin10t$ $f(t) = e^{-t}(cos9t - 3sin9t)$ expropriate form of a particular solution $f(t) = \frac{1}{2}sin10t$	B. $x(t) = \cos 5t - \sin 5t$ D. none of these ation y_p of the equation $y'' + 2y' + y = e^{-t}$ is B. Ate^{-t} D. none of these	
It is see of the A. $x(t)$ C. $x(t)$ The approximately Particular Particular A. $x(t)$	et in motion with initial position x_0 body is given by $f(t) = \cos 10t - \frac{1}{2}\sin 10t$ $f(t) = e^{-t}(\cos 9t - 3\sin 9t)$ Exprepriete form of a particular solution $\frac{1}{2}e^{-t}$	B. $x(t) = \cos 5t - \sin 5t$ D. none of these ation y_p of the equation $y'' + 2y' + y = e^{-t}$ is B. Ate^{-t} D. none of these	
It is see of the A. $x(t)$ C. $x(t)$ The approximately Particular A. $-\frac{1}{5}$	et in motion with initial position x_0 body is given by $(t) = \cos 10t - \frac{1}{2}\sin 10t$ $(t) = e^{-t}(\cos 9t - 3\sin 9t)$ Exprepriate form of a particular solution e^{-t} $(2e^{-t})$ Figure 1. Figure 1.	B. $x(t) = \cos 5t - \sin 5t$ D. none of these St. At e^{-t} D. none of these	

A	Exact	B. Homogeneous	
C	. Cauchy	D. none of these	
250) °	$\int_{0}^{\infty} e^{-x^2} dx =$	F - h	В
	0		
A	π	B. $\frac{\sqrt{\pi}}{2}$	
C	$\sqrt{\pi}$	D. none of these	
251)	The order and degree of the DE $\left(\frac{1+\left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{dx^2}}\right)^{\frac{3}{2}} = b$ ar	re respectively	С
A	1 and 3	B. 1 and 2	
C	. 2 and 3	D. none of these	
252) A	A general solution of 3 rd order DE contains		С
A	One constant	B. Two constants	
C	. Three constants	D. none of these	
253) S	Solving $y' + y' + 2y = 0$ with $y(0), y(1) = 1$ is	5	В
A	Initial value problem	B. Boundary value problem	
	. Eigen value problem	D. none of these	
254) I	If p and q are the order and degree of DE $y \frac{dy}{dx} + \frac{dy}{dx}$	$x^2 \left(\frac{d^2 y}{dx^2}\right)^3 + xy = \cos x \text{ , then}$	
A	p < q	B. $p = q$	A
C	p > q	D. none of these	
255) _A	A solution to the partial differential equation $\frac{\partial^2 u}{\partial x^2}$	$=9\frac{\partial^2 u}{\partial y^2}$ is	D
A	$ \cos(3x-y) $	B. $x^2 + y^2$	
$\overline{\mathbf{C}}$	$\sin(3x-y)$	D. none of these	
256) 7	The partial differential equation $5 \frac{\partial^2 z}{\partial x^2} + 6 \frac{\partial^2 z}{\partial y^2} =$	xy is classified as	A
A	Elliptic	B. Parabola	
$\overline{\mathbf{C}}$. Hyperbola	D. none of these	

7) T	The partial differential equation $xy \frac{\partial z}{\partial x} = 5 \frac{\partial^2 z}{\partial y^2}$ i	s	В
A.	Elliptic	B. Parabolic	
C.	Hyperbolic	D. none of these	
	•	fferential equation under non linear mechanics known	В
a	s the Kortewege-de-vires equation $\frac{\partial w}{\partial t} + \frac{\partial^3 w}{\partial x^3}$	$-6w\frac{\partial w}{\partial x} = 0$	
A.	. Linear, 3 rd order	B. Non-linear 3 rd order	
C.	Linear first order	D. none of these	
9) s	Solve $\frac{\partial u}{\partial x} = 6\frac{\partial u}{\partial t} + u$ using separation method of	f variable if $u(x,0) = 10e^{-x}$, $u =$	A
A.	$10e^{-x}e^{-\frac{t}{3}}$	B. $10e^{x}e^{-\frac{t}{3}}$	
C.	$10e^{\frac{x}{3}}e^{-t}$	D. none of these	
0) V	 While solving the partial differential equation by	y separable method we equate the ratio to constant	В
0) V	While solving the partial differential equation by which?	y separable method we equate the ratio to constant B. Can be positive or negative rational number or zero	В
0) V	While solving the partial differential equation by which?	B. Can be positive or negative rational number or	В
0) V W A.	While solving the partial differential equation by which? Can be positive or negative integer or zero Must be positive integer	B. Can be positive or negative rational number or zero	В
0) V W A. C.	While solving the partial differential equation by which? Can be positive or negative integer or zero Must be positive integer	B. Can be positive or negative rational number or zeroD. none of these	
0) V W A. C.	While solving the partial differential equation by which? Can be positive or negative integer or zero Must be positive integer When solving a 1-dimensional heat equation usi	B. Can be positive or negative rational number or zero D. none of these ng a variable separable method we get the solution	
0) V W A. C. 1) V A.	While solving the partial differential equation by which? Can be positive or negative integer or zero Must be positive integer When solving a 1-dimensional heat equation usi k is positive	B. Can be positive or negative rational number or zero D. none of these ng a variable separable method we get the solution B. k is 0 D. none of these	
0) V w A. C. 1) V A. (C. 2) f	While solving the partial differential equation by which? Can be positive or negative integer or zero Must be positive integer When solving a 1-dimensional heat equation usi k is positive k is negative	B. Can be positive or negative rational number or zero D. none of these Ing a variable separable method we get the solution B. k is 0 D. none of these E. is	C
0) V A. C. 1) V A. C. 2) f A. C.	While solving the partial differential equation by which? Can be positive or negative integer or zero Must be positive integer When solving a 1-dimensional heat equation usi k is positive k is negative $f(x,y) = \sin(xy) + x^2 \ln(y)$. Then f_{xy} at $(0,\frac{\pi}{2})$	B. Can be positive or negative rational number or zero D. none of these ng a variable separable method we get the solution B. k is 0 D. none of these 5) is B. 0 D. none of these	С
0) V w A. C. 1) V A. C. 2) f A. C. 3) f	While solving the partial differential equation by which? Can be positive or negative integer or zero Must be positive integer When solving a 1-dimensional heat equation usi k is positive k is negative $f(x,y) = \sin(xy) + x^2 \ln(y)$. Then f_{xy} at $(0,\frac{7}{2})$	B. Can be positive or negative rational number or zero D. none of these In a variable separable method we get the solution B. k is 0 D. none of these B. 0 D. none of these P. Then $\frac{df}{dt}$ at $t=1$ is B. -164	C D
0) V A. C. 1) V A. C. 2) f A. C. 3) f A. C.	While solving the partial differential equation by which? Can be positive or negative integer or zero Must be positive integer When solving a 1-dimensional heat equation usi k is positive k is negative $f(x,y) = \sin(xy) + x^2 \ln(y)$. Then f_{xy} at $(0,\frac{7}{2})$.	B. Can be positive or negative rational number or zero D. none of these In a variable separable method we get the solution B. k is 0 D. none of these B. 0 D. none of these 9. Then $\frac{df}{dt}$ at $t=1$ is B164 D. none of these	C D

C.	$\frac{d^2y}{dx^2} - \alpha^2 y = 0$	D. none of these	
55) T	The order of DE is defined as		В
A	. The highest degree of the variable	B. The order of the highest derivative	
C.	. The power of variable in the solution	D. none of these	
66) A	A primitive of an ODE is		С
A	. Its general solution	B. Its particular solution	
C.	. Its complementary solution	D. none of these	
(7) T	The solution of a DE subject to a condition s	satisfied at one particular point is called	С
A	. A boundary value problem	B. A two-point boundary value problem	
C.	. An initial value problem	D. none of these	
(8) A	A general solution of an nth order DE then		A
A	. <i>n</i> can be zero	B. <i>n</i> is any non-negative integer	
C.	. <i>n</i> is any integer	D. none of these	
⁵⁹⁾ T	The DE $\frac{dy}{dx} = \frac{ax+by+c}{a'x+b'y+c'}$ is		В
A	. Homogeneous	B. Non-Homogeneous	
C.	. Separable	D. none of these	
т (0	The order of D.E where general solution is	$\frac{1}{2}$ $\frac{1}$	
	C_1 , C_2 , C_3 , C_4 , C_5 , are arbitrary constant is	$y = c_1 e^{x_1} + c_2 e^{-x_1} + c_3 e^{3x_1} + c_4 e^{3x_1} + c_5$, where	A
		B. 4	A
A. C.		B. 4 D. none of these	A C
A. C.	C_1 , C_2 , C_3 , C_4 , C_5 , are arbitrary constant is $.5$. $.7$ The particular integral of DE $(D^2 - a^2)y - a^2$	B. 4 D. none of these	
A. C. (1) T	C_1 , C_2 , C_3 , C_4 , C_5 , are arbitrary constant is $\frac{.5}{.7}$. The particular integral of DE $(D^2 - a^2)y - a^2$	B. 4 D. none of these $cosax$ is $y =$	
A. C. C.	C_1 , C_2 , C_3 , C_4 , C_5 , are arbitrary constant is $\begin{array}{c} .5 \\ .7 \\ .7 \\ .7 \\\frac{x}{2a}cosax \\\frac{x}{2a}sinax \end{array}$	B. 4 D. none of these $cosax \text{ is } y =$ B. $\frac{x}{2a} sinax$	

	C. 1, 2	D. none of these	
273	A PDE $A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 u}{\partial y^2} + C \frac{\partial^2 u}{\partial x \partial y} = sinx - \frac{\partial^2 u}{\partial x \partial y} = sinx $	+ 2y where A, B, C are real constants	A
	A. Linear	B. Homogeneous	
	C. Non-Homogeneous	D. none of these	
274	The linear partial DE $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ is		В
	A. 2- dimensional Poisson equation	B. 2-dimensional Laplace equation	
	C. 3-dimensional Laplace equation	D. none of these	
275	The linear PDE $AU_{xx} + 2BU_{xy} + CU_{yy} =$	$F(x, y, U, U_x, U_y)$ is elliptic if	В
	A. $AB - C^2 > 0$ C. $AC - B^2 > 0$	B. $AC - B^2 > 0$	
	$C. AC - B^2 > 0$	D. none of these	
276	The wave equation $U_{tt} = c^2 U_{xx}$ is		С
	A. Elliptic	B. Parabolic	
	C. Hyperbolic	D. none of these	
277	$\frac{\partial^2 U}{\partial t^2} = c^2 \frac{\partial^2 U}{\partial x^2} $ is		В
	A. Heat equation	B. Wave equation	
	C. Equation of vibrating string	D. none of these	
278	The D.E $(1 - x^2)y' - 2xy' + n(n+1)y$	= 0 is	В
	A. Barrel equation	B. Legendre equation	
	C. Poisson equation	D. none of these	
279	The partial differential $\frac{\partial^2 z}{\partial x^2} + z \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2}$:	= 0 is	В
	A. Hyperbolic	B. Parabolic	
	C. Elliptic	D. none of these	
280	The PDE $(x^2 - yz)p + (y^2 - zx)q = z^2$	$-xy$ where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$ is	A
	A. Linear	B. Non-linear	

Let X be an arbitrary topological space and Y a Harsdorf space. Let f: X \rightarrow Y be a Continues function. Then the graph $G = \{(x,y): y = f(x) \text{ is subset of } X \times Y \text{ is } \dots \dots \text{ In } X \times Y \text{ A. Open} \\ C. Continuous & D. None of these \\ C. Continuous & D. None of these \\ Register Regis$	(C. Algebraic	D. none of these	
A. Open	281)	 Let X be an arbitrary topological space and Y a F	Harsdorf space. Let $f: X \rightarrow Y$ be a Continues function.	В
C. Continuous D. None of these		Then the graph $G = \{(x, y): y = f(x) \text{ is subset}$	et of $X \times Y$ is In $X \times Y$	
C. Continuous D. None of these	L	1 On on	D aloned	
SEE A First countable space X is a	_	*		
Regular Reg			v v	D
Regular Reg	4	$A. \mid T_0 space$	$B. \mid T_1 space$	
A. Normal B. Regular C. Completly Regular D. Topsace 84 (If R is a ring and J be its Maximal Ideal, then what about RJ? A RJ is vector B RJ is field C RJ is scaler D RJ is ring 885 (Saussian integers are form a A Vector B Scalar C Field D None of these 886 (Let 1 and J be the ideals of a commutative ring R Ideal of R is I + J = {a + b a ∈ I and b ∈ J} B hen I+J is A Principal Ideal C Maximal Ideal C None of these 887 (Let A and B be the subspace of a vector space V(F). Then Dim(A+B) is C. Dim A + Dim B B. Dim A+Dim B-Dim (A∩B) C. Dim A + Dim B-Dim (A∩B) D None of these 888 (F: R² → R² T(x, y) = (x + 2, y + 1) then T is A T is not Linear Transformation C. T is Kernel of Linear Transformation D None of these 889 (Let I and J be the ideals of a commutative ring R Ideal of R is I . J = {ab a ∈ I and b ∈ J} then IJ S A Ideal C Principal Ideal D None of these 890 (A ring Homomorphism is both (I-I) and onto, then I is called A. Endomorphism D. None of these 990 (A ring Homomorphism is both (I-I) and onto, then I is called A. Endomorphism D. None of these 991 (Fure will be trivial solution of homogenous equations, then there exist A. Linearly Independent B. Linearly Dependent C. Basis D, None of these 993 (I there will be trivial solution of homogenous equations, then there exist A. Linearly Independent B. Linearly Independent B. Linearly Independent B. Linearly Independent B. Bases	(
C. Completly Regular D. Tospace	283)	Let the product X of topological spaces be norma	al then each X is	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	A. Normal	B. Regular	
R/J is vector B R/J is field C R/J is scaler D R/J is ring	(C. Completly Regular	D. T ₀ space	
C R/J is scaler D R/J is ring	284)	f R is a ring and J be its Maximal Ideal, then what	t about R/J?	\boldsymbol{B}
C S Gaussian integers are form a C A Vector B Scalar D None of these	£	A R/J is vector	B R/J is field	
A Vector B Scalar C Field D None of these 286 Let I and J be the ideals of a commutative ring R Ideal of R is $I + J = \{a + b \mid a \in I \text{ and } b \in J\}$ $hen I + J$ is A Principal Ideal B Ideal of R C None of these 287 Let A and B be the subspace of a vector space V(F). Then Dim(A+B) is C Dim A + Dim B Dim (A \cap B) D None of these 288 T. R^2 \rightarrow R^2 T(x, y) = (x + 2, y + 1) then T is A T is not Linear Transformation D None of these 289 Let I and J be the ideals of a commutative ring R Ideal of R is I \cdot J = \{ab \cap a \cdot I \text{ and } b \in \cdot J \} then IJ A 3 Ideal B Not Ideal D None of these 3 Ideal B Not Ideal D None of these 4 Ideal B Not Ideal D None of these 5 Ideal D None of these 5 Ideal D None of these 6 Ideal D None of these 7 Ideal D None of these 8 Ideal D None of these 9 Ideal D	(C R/J is scaler	D R/J is ring	
A Vector B Scalar C Field D None of these 286 Let I and J be the ideals of a commutative ring R Ideal of R is $I + J = \{a + b \mid a \in I \text{ and } b \in J\}$ $hen I + J$ is A Principal Ideal B Ideal of R C None of these 287 Let A and B be the subspace of a vector space V(F). Then Dim(A+B) is C Dim A + Dim B Dim (A \cap B) D None of these 288 T. R^2 \rightarrow R^2 T(x, y) = (x + 2, y + 1) then T is A T is not Linear Transformation D None of these 289 Let I and J be the ideals of a commutative ring R Ideal of R is I \cdot J = \{ab \cap a \cdot I \text{ and } b \in \cdot J \} then IJ A 3 Ideal B Not Ideal D None of these 3 Ideal B Not Ideal D None of these 4 Ideal B Not Ideal D None of these 5 Ideal D None of these 5 Ideal D None of these 6 Ideal D None of these 7 Ideal D None of these 8 Ideal D None of these 9 Ideal D	285)	Gaussian integers are form a		C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			B Scalar	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(C Field	D None of these	
A Principal Ideal B Ideal of R C Maximal Ideal C Maximal Ideal C None of these			y .	В
C Maximal Ideal C None of these	ti	hen I+J is		
Let A and B be the subspace of a vector space $V(F)$. Then $Dim(A+B)$ is A. $Dim(A+Dim(B))$ C. $Dim(A+Dim(B))$ D. $None$ of these 1888 $T: R^2 \rightarrow R^2$ $T(x,y) = (x+2,y+1)$ then T is A. T is not Linear Transformation C. T is Kernel of Linear Transformation C. T is Kernel of Linear Transformation D. T is Linear Transformation C. T is Kernel of Linear Transformation D. T is Linear Transformation C. T is Kernel of Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation	P	A Principal Ideal	B Ideal of R	
Let A and B be the subspace of a vector space $V(F)$. Then $Dim(A+B)$ is A. $Dim(A+Dim(B))$ C. $Dim(A+Dim(B))$ D. $None$ of these 1888 $T: R^2 \rightarrow R^2$ $T(x,y) = (x+2,y+1)$ then T is A. T is not Linear Transformation C. T is Kernel of Linear Transformation C. T is Kernel of Linear Transformation D. T is Linear Transformation C. T is Kernel of Linear Transformation D. T is Linear Transformation C. T is Kernel of Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation D. T is Linear Transformation C. T is Linear Transformation D. T is Linear Transformation	(C Maximal Ideal	C None of these	
A. $Dim A + Dim B$ B. $Dim A + Dim B - Dim (A \cup B)$ C. $Dim A + Dim B - Dim (A \cap B)$ D. None of these288) $\Gamma: R^2 \to R^2$ $T(x,y) = (x+2,y+1)$ then T isA. T is not Linear TransformationB. T is Linear TransformationC. T is Kernel of Linear TransformationD. None of these289) Let I and J be the ideals of a commutative ring R Ideal of R is $I \cdot J = \{ab \mid a \in I \text{ and } b \in J\}$ then IJ isA. I idealA. I IdealB. Not IdealC. I Principal IdealD. None of these290) A ring Homomorphism is both I and onto, then it is calledD. I is EpimorphismC. I IsomorphismD. None of these291) Every ring I has surelyA. I wo I ingA. I Two I ingB. I One ringC. I Three I RingD. None of these292) If there will be trivial solution of homogenous equations, then there exist I	287)L	et A and B be the subspace of a vector space $V(F)$	T). Then $Dim(A+B)$ is	С
C. $Dim A + Dim B-Dim (A \cap B)$ D None of these 288) T: $R^2 \rightarrow R^2$ $T(x,y) = (x+2,y+1)$ then T is A T is not Linear Transformation C. T is Kernel of Linear Transformation D. None of these 289) Let I and J be the ideals of a commutative ring R Ideal of R is I. $J = \{ab \mid a \in I \text{ and } b \in J\}$ then IJ is A Ideal B. Not Ideal C. Principal Ideal D. None of these 290) A ring Homomorphism is both (1-1) and onto, then it is called A. Endomorphism C. Isomorphism D. None of these 291) Every ring R has surely A. Two Ring C. Three Ring D. None of these 292) If there will be trivial solution of homogenous equations, then there exist A. Linearly Independent C. Basis D. None of these 293) The vectors $(3,0,-3)$, $(-1,1,2)$, $(4,2,-2)$ and $(2,1,1)$ are A. Linearly Independent B. Bases				
R88 $\Gamma: R^2 \rightarrow R^2 T(x,y) = (x+2,y+1) \text{ then } T \text{ is} $ A T is not Linear Transformation B. T is Linear Transformation C. T is Kernel of Linear Transformation D. None of these	(C. $Dim A + Dim B-Dim (A \cap B)$		
A T is not Linear Transformation B. T is Linear Transformation C. T is Kernel of Linear Transformation D. None of these 289 Let I and J be the ideals of a commutative ring R Ideal of R is I . J = {ab a ∈ I and b ∈ J} then IJ A				A
C. T is Kernel of Linear Transformation D. None of these 289) Let I and J be the ideals of a commutative ring R Ideal of R is $I \cdot J = \{ab \mid a \in I \text{ and } b \in J\}$ then IJ is A Ideal C. Principal Ideal D. None of these 290) A ring Homomorphism is both (1-1) and onto, then it is called A. Endomorphism C. Isomorphism D. None of these 291) Every ring R has surely A. Two Ring C. Three Ring D. None of these 292) If there will be trivial solution of homogenous equations, then there exist A. Linearly Independent C. Basis D. None of these 293) The vectors $(3,0, -3), (-1,1,2), (4,2,-2)$ and $(2,1,1)$ are A. Linearly Independent B. Bases			B. T is Linear Transformation	
Let I and J be the ideals of a commutative ring R Ideal of R is $I.J = \{ab \mid a \in I \text{ and } b \in J\}$ then IJ is A Ideal B. Not Ideal C. Principal Ideal D. None of these Popular R Ideal D. None of these Popular D. None of these Popular R Ideal D. Ide	<u> </u>	ý .		
A Ideal C. Principal Ideal D. None of these 290) A ring Homomorphism is both (1-1) and onto, then it is called A. Endomorphism C. Isomorphism D. None of these 291) Every ring R has surely A. Two Ring C. Three Ring D. None of these 292) If there will be trivial solution of homogenous equations, then there exist A. Linearly Independent C. Basis D. None of these 293) The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases		·		A
C. Principal Ideal D. None of these 290) A ring Homomorphism is both (1-1) and onto, then it is called A. Endomorphism B. Epimorphism C. Isomorphism D. None of these 291) Every ring R has surely A. Two Ring C. Three Ring D. None of these 292) If there will be trivial solution of homogenous equations, then there exist A. Linearly Independent C. Basis D. None of these 293) The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases			R Not Ideal	
290)A ring Homomorphism is both (1-1) and onto, then it is called A. Endomorphism B. Epimorphism C. Isomorphism D. None of these 291)Every ring R has surely A. Two Ring C. Three Ring D. None of these 292)If there will be trivial solution of homogenous equations, then there exist A. Linearly Independent C. Basis D. None of these 293)The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases	7			
A. Endomorphism C. Isomorphism D. None of these 291) Every ring R has surely A. Two Ring C. Three Ring D. None of these 292) If there will be trivial solution of homogenous equations, then there exist A. Linearly Independent C. Basis D. None of these 293) The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases	200)4		V	D
C. Isomorphism D. None of these 291) Every ring R has surely A. Two Ring C. Three Ring D. None of these 292) If there will be trivial solution of homogenous equations, then there exist A. Linearly Independent C. Basis D. None of these 293) The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases		<u> </u>		D
Per Pring R has surely A. Two Ring B. One ring C. Three Ring D. None of these Per Prince Will be trivial solution of homogenous equations, then there exist A. Linearly Independent C. Basis D. None of these Per Prince Will be trivial solution of homogenous equations, then there exist B. Linearly Dependent C. Basis D. None of these Per Prince Will be trivial solution of homogenous equations, then there exist B. Linearly Dependent C. Basis D. None of these Per Prince Will be trivial solution of homogenous equations, then there exist B. Linearly Dependent C. Basis D. None of these Per Prince Will be trivial solution of homogenous equations, then there exist B. Linearly Dependent C. Basis D. None of these				
A. Two Ring C. Three Ring D. None of these 292) If there will be trivial solution of homogenous equations, then there exist A. Linearly Independent B. Linearly Dependent C. Basis D. None of these 293) The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases			D. prone of these	4
C. Three Ring D. None of these 292) If there will be trivial solution of homogenous equations, then there exist A. Linearly Independent C. Basis D. None of these 293) The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases			n lo	A
P32) If there will be trivial solution of homogenous equations, then there exist A. Linearly Independent C. Basis D. None of these P33) The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases	1			
A. Linearly Independent C. Basis D. None of these 293) The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases	202	· · · · · · · · · · · · · · · · · · ·	v v	
C. Basis D. None of these 293) The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases				В
293) The vectors (3,0, -3), (-1,1,2),(4,2,-2) and (2,1,1) are A. Linearly Independent B. Bases	_			
A. Linearly Independent B. Bases				
A. Linearly Independent B. Bases				C
			D None of these	

Discipl	

subset of $V(F)$ then	$f(F)$ and let $\{w_1, w, w_r\}$ be linearly independent	
A. (i) $n < r$ (ii) $n \ge r$ (iii) $n \le r$	B. $(i) n > r$ $(ii) n \ge r$ $(iii) n \le r$	
$C. \mid (i) \mid n = r (ii) \mid n \ge r (iii) \mid n \le r$	D None of these	
(5) Let $T: V_1(F) \to V_2(F)$ be a linear transformation.		В
A. subspace of $V_1(F)$	B. subspace of $V_2(F)$	
C. Subspace of $V_1(F) \cap V_2(F)$	D. None of these	<u> </u>
6)Converse of the Lagrange 's Theorem holds true in		A
A. Lagrange 's Theorem	B. 3 rd Sy low Theorem	4
C. Sy low Theorem	D. None of these	
7) If H is the only One P-sylow subgroup of a finite g		C
A. Cyclic	B. Abelian	_
C. Normal	D. None of these	
8)Every Characteristic subgroup is a		В
A. Double Cosets	B. Normal subgroup	
C. Invariant Subgroup	D. None of these	
9) n group theory Z(G) is fully		C
A. Covariant	B. Cosets	
C. Invariant	D. None of these	
0 If a group is there is no inner automorp	phism	\boldsymbol{A}
A. Abelian	B. Cyclic	
C. Non-Abelian	D. None of these	
1) Every outer is inner automorphism $\emptyset_a : g \to aga^-$	$a^{-1} = g in \dots \dots \dots$	\boldsymbol{A}
A. Abelian	B. Cyclic	
C. Non-Abelian	D. None of these	
Let H and K be normal subgroup of G where H is	<u> </u>	С
A. 2 nd isomorphism Theorem	B. 3 rd isomorphism Theorem	
C. I^{st} isomorphism Theorem	D. None of these	
Under the condition $\frac{HK}{K} = \frac{H}{H \cap K}$ holds in group G_J	for its subgroup H & K	\boldsymbol{A}
	B. (i)K is normal in HK (ii) HUK is normal in H	
- IA. ICHK IS NORMAL IN HK (IL) H () K - IS NORMAL IN H		-
	D None of these	
C. (i)K is normal in K (ii) $H \cap K$ is normal in H	D. None of these	C
C. (i)K is normal in K (ii) $H \cap K$ is normal in H 4)The identity of the Quotient group of G by its norm	nal subgroup H is always	C
C. (i)K is normal in K (ii) $H \cap K$ is normal in H 4)The identity of the Quotient group of G by its norm A . G	nal subgroup H is always B. K	C
C. (i)K is normal in K (ii) H ∩ K is normal in H (4)The identity of the Quotient group of G by its norm A. G C. H	nal subgroup H is always B. K D. None of these	
C. (i)K is normal in K (ii) H ∩ K is normal in H (4)The identity of the Quotient group of G by its norm A. G C. H (5)Every automorphism is endomorphism its converse	nal subgroup H is always B. K D. None of these e is	C A
 C. (i)K is normal in K (ii) H ∩ K is normal in H 4)The identity of the Quotient group of G by its norm A. G C. H 5)Every automorphism is endomorphism its converse A. Not true 	nal subgroup H is always B. K D. None of these e is B. True	
 C. (i)K is normal in K (ii) H ∩ K is normal in H (4)The identity of the Quotient group of G by its normal. A. G C. H (5)Every automorphism is endomorphism its conversed. A. Not true C. False 	nal subgroup H is always B. K D. None of these e is B. True D. None of these	
C. (i)K is normal in K (ii) $H \cap K$ is normal in H (4)The identity of the Quotient group of G by its norm A. G C. H (5)Every automorphism is endomorphism its converse A. Not true C. False (6) A mapping $\mu: G \to \frac{G}{K}$, $\mu(g) = gk$, $\forall g \in G$ the	nal subgroup H is always B. K D. None of these e is B. True D. None of these en µ is an	A
C. (i)K is normal in K (ii) $H \cap K$ is normal in H (4)The identity of the Quotient group of G by its norm A. G C. H (5)Every automorphism is endomorphism its converse A. Not true C. False (6)A mapping $\mu: G \to \frac{G}{K}$, $\mu(g) = gk$, $\forall g \in G$ the A. Endomorphism of G to G/K	nal subgroup H is always B. K D. None of these e is B. True D. None of these en \(\mu \) is an B. Epimorphism of G to G/K	A
C. (i)K is normal in K (ii) $H \cap K$ is normal in H (4)The identity of the Quotient group of G by its norm A. G C. H (5)Every automorphism is endomorphism its converse A. Not true C. False (6)A mapping $\mu: G \to \frac{G}{K}$, $\mu(g) = gk$, $\forall g \in G$ the A. Endomorphism of G to G/K C. Homomorphism of G to G/K	nal subgroup H is always B. K D. None of these e is B. True D. None of these en µ is an B. Epimorphism of G to G/K D. None of these	A B
C. (i)K is normal in K (ii) $H \cap K$ is normal in H (4)The identity of the Quotient group of G by its norm A. G C. H (5)Every automorphism is endomorphism its converse A. Not true C. False (6)A mapping $\mu: G \to \frac{G}{K}$, $\mu(g) = gk$, $\forall g \in G$ the A. Endomorphism of G to G/K C. Homomorphism of G to G/K	nal subgroup H is always B. K D. None of these e is B. True D. None of these en µ is an B. Epimorphism of G to G/K D. None of these oup of G	A
C. (i)K is normal in K (ii) $H \cap K$ is normal in H (4)The identity of the Quotient group of G by its norm A. G C. H (5)Every automorphism is endomorphism its converse A. Not true C. False (6)A mapping $\mu: G \to \frac{G}{K}$, $\mu(g) = gk$, $\forall g \in G$ the A. Endomorphism of G to G/K C. Homomorphism of G to G/K	nal subgroup H is always B. K D. None of these e is B. True D. None of these en µ is an B. Epimorphism of G to G/K D. None of these	A B

	A. Abelian	B. subgroup	
	C. Normal	D. None of these	
309)	A finite p group has acenter		\boldsymbol{A}
	A. Trivial	B. Non-trivial	
	C. Normal	D. None of these	
310)	If G isthen all the elements of finite order	r in a group G form its subgroup.	C
	A. Non-abelian	B. Normal	
	C. Abelian	D. None of these	
311)	Every subgroup of an abelian group is	· · · ·	В
	A. Non-abelian	B. Normal	
	C. Abelian	D. None of these	
312)	The center of simple group is		A
,	A. Either identity or group itself	B. group itself	1
	C. Identity	D. None of these	
313)	Let G be group of order 2p, where p is prime then		A
	A.p	B. $ 2p$	
	C. p/2	D. None of these	1
314)	If HK= KH, then HK is thesubgroup conta	V	C
	A. Normal	B. Largest	1
	C. Smallest	D. None of these	1
315)		is the subgroup of g contained in both H &K.	В
	A. Normal	B. Largest	1
	C. Smallest	D. None of these	1
316)	The subgroup containing H & K is the subgi		C
	A. Normal	B. Largest	1
	C. Smallest	D. None of these	1
217)	Everyspace is Lindelöf	p. wone of these	C
	A. 1 st Countable	B. Countable	
	C. Second Countable	D. None of these	
219)			В
	A discrete space X is if and only if it is countable		- B
	A. Symmetric	B. Separable	4
210)	C. Countable	D. None of these	<i>C</i>
,	All open intervals are	p r r	C
	A. Separable	B. Isomorphism	-
220)	C. Homeomorphism	D. None of these	D
320)	The set of Z integers as a subspace of R has		D
	A. Indiscrete	B. Coffinite	4
	C. Countable	D. None of these	<u> </u>
321)		$Y \to Z$ be continues function & then Is Continues	A
	$A. \ gof: X \to Z$	$B. \ gof: X \to Y$	4
	$C. gof: Y \rightarrow X $	D. None of these	
	A function f is continuing on a topological space		В
	A. One	B. Every	
	C. Two	D. None of these	
323)	Any uncountable set X with topology is not	1 st Countable and so not 2 nd Countable.	В
	A. Usual	B. Cofinite	
	C. Discrete	D. None of these	1

324 A space X is said to completely Norma	al if and only if every subspace of x is Normal is called	\overline{A}
A. Completely Normal	B. Normal	
C. completely Regular	D. None of these	
	nt of disjoint closed sets has neighborhoods whose closures are	С
also		
A. Joint	B. Closures	
C. Disjoint	D. None of these	
326) A normal T ₁ space is		D
A. Normal	B. Not regular	
C. Closed	D. None of these	
327)Every Closed subspace of a T ₄ space	is a	D
A. Normal	B. Not regular	
C. Closed	D. None of these	
328) Every subspace of completely Regular	r space is	C
A. Regular	B. Not Regular	
C. Completely Regular	D. None of these	
$329)T_3$ space is a		\boldsymbol{A}
A. Regular T_1 space.	B. Regular T ₂ space.	
C. Regular T ₄ space.	D. None of these	
$(330)T_2$ space is called		C
A. Regular Space	B. Normal Space	
C. Harsdorf Space	D. None of these	
·	A subset W of V is called Of V if under the operation of V,	С
W itself forms a vector space over F		C
W itself forms a vector space over F A. Vector	B. Scalar	C
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces		В
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and	
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum	
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and	
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum	
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these	В
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space Vectors, v ₂ ,v _n } is denoted by	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these	В
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space V	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these	В
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space Vector, v ₂ ,v _n } is denoted by L {v ₁ ,v ₂ ,v _n } is called	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these V(F) which can be written as Linear Combination of	В
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space Vector, v ₂ ,v _n } is denoted by L {v ₁ ,v ₂ ,v _n } is called A. Linear Span	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these V(F) which can be written as Linear Combination of B. Direct Sum	В
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space of the space over F A. Vector C. subspace	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these V(F) which can be written as Linear Combination of B. Direct Sum	B
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space Vector, v ₂ ,v _n } is denoted by L {v ₁ ,v ₂ ,v _n } is called A. Linear Span C. Subspace 334) P _n (F)={1,x,x ² ,x ⁿ } is	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these V(F) which can be written as Linear Combination of B. Direct Sum D. None of these D. None of these	B
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space of the space	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these V(F) which can be written as Linear Combination of B. Direct Sum D. None of these B. Linearly Independent	B
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space Vector, v ₂ ,v _n } is denoted by L {v ₁ ,v ₂ ,v _n } is called A. Linear Span C. Subspace 334) P _n (F)={1,x,x ² ,x ⁿ } is A. Linearly dependent C. Basis	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these V(F) which can be written as Linear Combination of B. Direct Sum D. None of these B. Linearly Independent	B A
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space Vector, v ₂ ,v _n } is denoted by L {v ₁ ,v ₂ ,v _n } is called A. Linear Span C. Subspace 334) P _n (F)={1,x,x ² ,x ⁿ } is A. Linearly dependent C. Basis 335) The set of polynomials is	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these V(F) which can be written as Linear Combination of B. Direct Sum D. None of these B. Linearly Independent D. None of these	B A
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space Vector, v ₂ ,v _n } is denoted by L {v ₁ ,v ₂ ,v _n } is called A. Linear Span C. Subspace 334) P _n (F)={1,x,x ² ,x ⁿ } is A. Linearly dependent C. Basis 335) The set of polynomials is A. Linearly dependent	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these V(F) which can be written as Linear Combination of B. Direct Sum D. None of these B. Linearly Independent D. None of these B. Basis D. None of these	B A
W itself forms a vector space over F A. Vector C. subspace 332) Let W ₁ and W ₂ be the two subspaces W ₂ A. Sum C. subspace 333) The set of all vectors in vector space Vector (v ₁ , v ₂ , v _n) is denoted by Let (v ₁ , v ₂ , v _n) is called A. Linear Span C. Subspace 334) P _n (F)={1,x,x ² ,x ⁿ } is A. Linearly dependent C. Basis 335) The set of polynomials is A. Linearly dependent C. Linearly Independent	B. Scalar D. None of these s of vector space V(F). Then V(F) is said to be of W ₁ and B. Direct Sum D. None of these V(F) which can be written as Linear Combination of B. Direct Sum D. None of these B. Linearly Independent D. None of these B. Basis D. None of these	B A C

iscip		

A. Linearly independent	B. Linearly dependent	
C. Basis	D. None of these	
	etor space V(F) is called Vector space of V(F)	С
A. Linearly independent	B. Basis	
C. Dimension	D. None of these	
$O(R) = C$ the set of all complex numbers, {		С
A. Dimension	B. Linearly dependent	
C. Linearly independent	D. None of these	
))If C(C) is a vector space over the field of Co	omplex Number ,then the Basis and dimension is	C
A. $Dim(C) = 1$, Basis = 2	B. Dim(C) =2, Basis =1	
C. Dim(C) =1, Basis =1	D. None of these	
A linearly independent set is always a part of	f of V(F)	A
A. Basis	B. Subspace	
C. Vector Space	D. None of these	
$2) \text{ If } V = M_{n \times n}(F), \text{ Let } T: M_{n \times n} \to M_{n \times n} \text{ be } G$	$defined by T(A) = A^t. T is a$	A
A. Linear Transformation	B. Range of Linear of Transformation	
C. Not a Linear Transformation	D. None of these	
$T: R^2 \to R^2, T(x,$	(x, y) = (x + 2, y + 1) then T is	
A. Linear Transformation	B. Range of Linear of Transformation	C
C. Not a Linear Transformation	D. None of these	
Linear Transformation is called if it is tl	hen it is called Monomorphism	A
A. One -One	B. Onto	
C. One-one and onto	D. None of these	
5)Linear Transformation is called if it is the	hen it is called Isomorphism	C
A. One -One	B. Onto	
C. One-one and onto	D. None of these	
(6) Let $T: V_1 \to V_2$ be a linear transformat $\in V_1$ } is called	tion then image of T is defined as $R(T) = \{T(V_1) v_1 \}$	В
A. Linear Transformation	B. Range of Linear of Transformation	
C. Not a Linear Transformation	D. None of these	
VLet $V(F)$ be a vector if dim n . then		C
$A. V_n(F) = F$	$B. V_n(F) = F^{n-1}$	
$C.V_n(F) = F^n$	D. None of these	
(3) Let $T: V_1$		В
$\rightarrow V_2$ be a linear transformation between	veen two vector space $V_1(F)$ and $V_2(F)$, where $V_1(F)$ a	
have dimension then T is $(1-1)iff$ T is		
A. One -One	B. Onto	
C. One-one and onto	D. None of these	
(V) Let $T: V_1 \to V_2$ be a linear transformation	on Then ker T is subspace of	В
$A.V_2(F)$	$B. V_1(F) $	
C. R(T)	D. None of these	
) Let $T: \overline{V_1 \to V_2}$ be a linear transformation	on Then $R(T)$ is subspace of Where $R(T) = Ker$	A
of T		
$A.V_2(F)$	$B.V_1(F)$	

351) Let $T: V_1 \rightarrow V_2$ be a linear transform	nation Then T is If $f(N(T)) = \{0_1\}$	A
A. One -One	B. Onto	
C. One-one and onto	D. None of these	
352) Let $T: V_1 \rightarrow V_2$ be a linear transform	nation then	С
A. $Dim V_1(F) = Nullity(T)$	B. $Dim V_1(F) = Nullity(T) + Range(T)$	
C. $Dim V_1(F) = Nullity (T) + Rank (Y)$		
353) Let $T: V \rightarrow V$ is If $f T^{-1}$ exist s		В
A. Singular	B. Non-singular	
C. Bijective	D. None of these	
354) Let $T: V \to V$ be a linear and Dim $V =$	n then T can not more then eigen values	В
A. n+1	B. n	
C. n-1	D. None of these	
355) An $n \times n$ matrix A is iff A has r	n real and distinct eigen values	C
A. Similar	B. Orthogonal	
C. Diagonalizable	D. None of these	
356) Is $G = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ a group of mod	18	A
A. Yes	B. No	
C. Basis	D. None of these	
357)An element $a \in G$ is said and congug	gate to $b \in G$, if there exist an element $g \in G$ s.t.a =	A
$g^{-1}ag$ is called		
A. Conjugate of an element in a group	B. Self-conjugate of an element in a group	
C. Equivalence Relation	D. None of these	
358) How many conjugate classes are there I s	symmetric group S_3	С
A. 1	B. 2	
C. 3	D. None of these	
359)Every Group of prime order is a		A
A. Cyclic	B. Generator	
C. Center of the group	D. None of these	
(Q +) is		В
A. A cyclic group	B. Not cyclic group	
C. Abelian group	D. None of these	
361) A cyclic of length 2 is called		C
A. Permutation	B. Combination	
C. Transposition	D. None of these	
362)Each permutation can be expressed as pr	roduct of	В
A. Not Cyclic Permutation	B. Cyclic Permutation	
C. Transposition	D. None of these	
363) If group is abelian , then what will b	$e N_G(X)$?	A
$A.[N_G(X)] = G$	$B. N_G(X) = X$	
$C. N_G(X) = N$	D. None of these	
364) Let $\emptyset: (Z, +) \rightarrow (Z, +)$ defined by $\emptyset(n)$	$)=2n \ \forall \ n \in Z=set \ of \ integers \ is example \ of$	С
A. Isomorphism	B. Epimorphism	
C. Monomorphism	D. None of these	
365) Let $\emptyset: (Z, +) \to (G, .) = \{\pm 1, \pm i\} define$	$ned by \overline{\emptyset(n) = i^n \ \forall \ n \in Z =}$	В
set of integers is example of		
	D. Enimourahiam	
A. Isomorphism	B. Epimorphism	

Discipline:			

Set of even integer is example of A. Isomorphism C. Monomorphism D. None of these		
C. Pronomorphism D. Prone of these		
367)Every Characteristic subgroup is a	С	
A. Subgroup B. Invariant		
C. Normal Subgroup D. None of these		
368)When are the subgroups of group its normal subgroup?	В	
A. Left coset \neq Right Coset B. Left coset = Right Coset		
C. Left coset × Right Coset D. None of these		
369) If p is prim divisor of a finite group G having order n then G has an element with order p is called	С	
A. Sylow 2 nd Theorem B. Lagrange's Theorem	-	
C. Cauchy 2 nd order Theorem D. None of these		
370) Intersection of two subrings be an	В	
A. Quotient Set B. Empty Set		
C. Integer Set D. None of these		
371)Every ideal is a	С	
A. Maximal B. Ring	\dashv	
C. Subring D. None of these		
1 0	В	
$R = M_{2\times 2} \text{ be the ring of } 2\times 2 \text{ matirces }, R = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, I_1 = \begin{pmatrix} r_1 & 0 \\ r_2 & 0 \end{pmatrix} \text{ , } r_1, r_2 \in R \text{ is}$	B	
A. Right Ideal B. Left Ideal		
C. Sided ideal D. None of these		
$R = M_{2\times 2} \text{ be the ring of } 2\times 2 \text{ matirces }, R = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, I_1 = \begin{pmatrix} r_1 & r_2 \\ 0 & 0 \end{pmatrix} , r_1, r_2 \in R \text{ is}$	A	
A. Right Ideal B. Left Ideal		
C. Sided ideal D. None of these		
374) Irrational number is a	В	
A. Ring B. Not Ring		
C. Ideal ring D. None of these		
375) A ring I which the non-zero element form a multiplication group is called	C	
A. Ring B. Ideal Ring		
C. Division Ring D. None of these		
376) The dimension of the null space is called	D	
A. Ring B. Ideal Ring		
C. Division Ring D. None of these		
377)Subspace of a Discrete space is	C	
A. Topological Space B. Indiscrete		
C. Discrete D. None of these		
378) In particular, the open intervals on the real lines are base for thetopology.	C	
A. Discrete B. Indiscrete		
C. Usual D. None of these		
379) Every Compact subsets R^n is	A	
A. Closed and bounded B. Closed and Continuous		
C. Open and interior D. None of these		
380)The continouse image of a conected space is	С	
A. Discrete B. Disconnected		

iscip	

C. Connected D. None of these

			12	
	Whi	ich of the following is the degree of the diff	erential equation $\frac{d^2x}{dx^2} + 2x^3 = 0$?	
381)	ai			C
301)	A.	0	B. 1	
	C.	2	D. 3	
	The	e order and degree of differential equati	on $\frac{d^3x}{dt^3} + 4\sqrt{\left(\frac{dy}{dx}\right)^3} + y^2 = 0$ are respectively	
382)			$dt^{s} \bigvee (dx)$	A
302)				
	A.	3 and 2	B. 2 and 3	
	C.	3 and 3	D. 3 and 1	+
	The o	differential equation $2\frac{dy}{dx} + x^2y = 2x + 3$ is		
383)			D. N. I. L.	A
	A. C.	Linear Linear with fixed constants	B. Non-Linear D. Undetermined to be linear of	on non linean
				or non-intear
	Whic	ch of the following is the solution of the dif	erential equation $\frac{dy}{dt} = 5y$; $y(0) = 2$	
384)	A.			D
/		$y = 5e^{-5t}$	y – 2e	
	C.	$y = 3e^{-5t}$	D. $y = 2e^{5t}$	
	- T-1		$d^2y (dy)^3$	
205)	The order and degree of differential equation $3\frac{d^2y}{dt^2} + 4\left(\frac{dy}{dx}\right)^3 + y^4 = e^{-t}$ are respectively			
385)	Α.	2 and 1	B. 1 and 2	A
	C.	4 and 3	D. 2 and 3	
		ferential equation is said to be ordinary dif		
386)	A.	one dependent variable	B. More than one dependent v	rariables C
	C.	one independent variable	D. More than one dependent v	rariables
		h of the following is the trivial solution of		
387)	A.	$y \equiv 0$	B. $y \propto 0$	A
	C.	$y \neq 0$	D. $y \approx 0$	
	The o	differential equation $x^2 \frac{dy}{dx} - 2xy = \sin x$ is	efined for	
388)		$(0,\infty)$	B. $(0,1) \cup (1,\infty)$	D
		1 2 2		
	C.	$(-\infty,0)\cup(1,\infty)$	D. $\left(-\infty,\infty\right)$	
	The o	differential equation $y'' + \frac{1}{x}y = \frac{1}{x^2 - 4}$ is defined	fined for	
389)	A.	$(0,\infty)$	B. $(0,1) \cup (1,\infty)$	D
	C.	,	D. All real line except 0,2 and -	2
	С.	$(-\infty,\infty)$	D. All real line except 0,2 and	2
	Whic	ch of the following is the solution of the dif	erential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = 0$	
390)	A.	y = Ax + B	$B. y = Ax^2 + Bx$	С
		R	<u> </u>	
	C.	$y = Ax + \frac{B}{x}$	D. $y = \frac{A}{x} + Bx$	
		x	h is not obtained from the general solution i	a Impayon as

Discipline:

	A. Particular solution	B. Singular solution			
	C. Complete solution	D. Auxiliary solution			
392)	The differential equation $\frac{dy}{dx} = y^2$ is:		В		
392)	A. Linear	B. Non-Linear	Б		
	C. Quasi Linear	D. None of these			
	The equation $a_0 x^2 y'' + a_1 x y' + a_2 y = \varphi(x)$ is called:				
393)	A. Legendre's linear equation	B. Cauchy's linear equation	В		
	C. Simultaneous equation	D. None of these			
20.4)	Which of the following is wronskian of $\cos \theta$ and $\sin \theta$				
394)	A. 1	B. $\sin \theta$	A		
	C. $\cos \theta$	D. None of these			
205)	Which of the following is wronskian of x , x^2 and x^3 ?				
395)	A. 2 <i>x</i>	B. $2x^3$	В		
	C. 2	D. None of these			
	Which of the following is wronskian of x^2 , x^3 and x^{-2} ?				
396)	A. 20x	B. $20x^2$	C		
	C. 20	D. None of these			
	Which of the following is wronskian of e^x , $2e^x$ and e^{-x} ?				
397)	A. 1	B. e^x	C		
	C. 0	D. None of these			
	$\sin 2x$ and $\cos 2x$ are				
398)	A. Linearly Independent	B. Linearly dependent	A		
	C. Singular D. None of these				
	T	the circles passing through origin having centers on x-axis			
399)	A.	$B. 2xy\frac{dy}{dx} + x^2 = 0$	A		
	$C. \frac{dy}{dx} + x^2 - y^2 = 0$	D. None of these			
	If a differential equation $\frac{dy}{dx} = f(x, y)$ can be written in the form of $g(y)dy = f(x)dx$ then it is called				
400)	A. Exact	B. Linear	D		
	C. Non-exact	D. Separable			
	Which of the following is the solution of $\frac{dy}{dx} = 8x^3y^2$?				
401)	$A. y = \frac{-1}{2x^4 + c}$	$B. y = 2x^4 + c$	A		
	C. $y = 2x + c$	D. None of these			
	Which of the following is the solution of $\frac{dy}{dx} = 1 + y^2$?	27 1,000 01 0000			
402)	A. $y = \sin(x) + c$	$B. y = \sin^{-1}(x) + c$	C		
	C. $y = \tan(x+c)$	D. None of these			
	Which of the following is the solution of $\frac{dy}{dx} = 2y$?	<u> </u>			
403)	A. $y = ce^x$	B. $y = ce^{2x}$	В		
	$\begin{array}{ccc} C. & y - ce \\ C. & y = e^x + c \end{array}$	D. None of these			
404)	Which of the following is the solution of $\frac{dy}{dx} = x\sqrt{1-y^2}$		В		
/	$\frac{\partial}{\partial x} dx$				

		1	1	1
	A. $y = \cos\left(\frac{x^2}{2} + c\right)$	В.	$y = \sin\left(\frac{x^2}{2} + c\right)$	
	$C. y = \cos(x+c)$	D.	None of these	
405)	A differential equation that can be put in the form of $\frac{dy}{dx} = f$	$\left(\frac{y}{x}\right)$ is	known as	D
+03)	A. Separable	B.	Exact	
	C. Non Exact	D.	Homogenous	
406)	A differential equation $\frac{dy}{dx} = \frac{y}{x} - \frac{y^3}{x^3}$ is known as			D
ĺ	A. Separable	В.	Exact	
	C. Non Exact	D.	Homogenous	
407)	A differential equation $\frac{dy}{dx} = \frac{y}{x} + e^{y/x}$ is known as	ı		D
	A. Separable	B.	Exact	
	C. Non Exact	D.	Homogenous	
	A differential equation $M(x, y)dx + N(x, y)dy = 0$ is exact if	t		
	A. $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	n	$\partial M \rightarrow \partial N$	
408)	A. $\frac{\partial}{\partial y} = \frac{\partial}{\partial x}$	B.	$\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$	A
	C. $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$	D.	None of these	
409)	$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \text{ is known as}$			A
10)	A. Exact differential	B.	Laplace differential	
	C. Homogenous differential	D.	None of these	
	The differential equation $-ydx + xdy = 0$ is			
410)	A. Separable	B.	Exact	D
	C. Non-Exact	D.	A and C both	
	Which of the following integrating factor can	be mi	ultiplied by $-ydx + xdy = 0$ to make it exact?	
411)	A. $ x^2 $	B.	e^x	- C
411)	C. $\frac{1}{x^2}$	D.	None of these	
	If a differential equation $M(x, y)dx + N(x, y)dy = 0$ is not ex	kact ar	and $\frac{M_y - N_x}{N} = f(x)$ then integrating factor is	
412)	A. $e^{\int f(x)dx}$	B.	e^x	Α
	C. $\int f(x)dx$	D.	None of these	
	The solution of an exact differential equation $(3x^2y^2 + 2xy)$			
413)	A. $x^3y^2 + x^2y = C$	B.	$x^3y^2 + y = C$	A
	$C. xy^2 + x^2y = C$	D.	None of these	
			1 OLD OF GROOT	
	The differential equation $(x^4 + y^4)dx - xy^3dy = 0$ is			
414)	A. Linear	B.	Exact	С
	C. Homogenous	D.	None of these	\perp
415)	A differential equation $\frac{dy}{dx} + 2y = 6e^x$ is			A
120)	A. Linear	B.	Non-linear Non-linear	
	C. Homogenous	D.	None of these	

	T				
44.5	A differential equation $\frac{dy}{dx} + \frac{2}{x}y = 9$ is				
416)	A. Linear	B. Non-linear		A	
	C. Homogenous	D. None of the	ese		
417)	A differential equation $\frac{dy}{dx} + y = 5x$ is				
417)	A. Linear	B. Non-linear		A	
	C. Homogenous	D. None of the	ese		
418)	A differential equation $\frac{dy}{dx} + 3xy = \sin x$ is			A	
110)	A. Linear	B. Non-linear			
	C. Homogenous	D. None of the	ese		
419)	A differential equation $\frac{dy}{dx} + 3xy^2 = \sin x$ is			В	
	A. Linear	B. Non-linear			
	C. Homogenous	D. None of the			
	What is the solution of a linear differential equation $\frac{dy}{dx} + 2x$	$=2e^{-x^2}$ with integral	rating factor e^{x^2} ?		
420)	$A. y = (2x+c)e^x$	$B. y = \left(x^2 + c\right)$	$\left e^{-x^2}\right $	D	
	$C. y = ce^{-x^2}$	D. y = (2x + c)	e^{-x^2}		
421)	A differential equation $\frac{dx}{dy} + \frac{2}{y}x = 10y^2$ is			A	
ĺ	A. Linear	B. Non-linear			
	C. Homogenous	D. None of the	ese		
422)	A differential equation $x \frac{dy}{dx} + y = xy^3$ is				
,	A. Linear	B. Bernouli			
	C. Homogenous	D. None of the	ese		
423)	A differential equation $\frac{dy}{dx} = \frac{1}{x}y^2 + \frac{1}{x}y - \frac{2}{x}$ is	D D 11		D	
	A. Linear	B. Bernouli			
	C. Homogenous	D. Riccati			
424)	Which of the following is the solution of $\frac{e^y}{1+e^y} dy = \frac{2x}{1+x^2} dx$				
424)	$A. 1+e^{y}=C(1+x^2)$	$\mathbf{B.} \mathbf{y} = C(1+x)$.2)	A	
	$C. e^{y} = C(1+x^{2})$	D. None of the	ese		
	The solution of an exact differential equation $(3x^2 + y\cos x)$	$dx + \left(\sin x - 4y^3\right)dy$	y = 0 is		
425)	$A. x^3 + y\sin x - y^4 = C$	B. $y \sin x - y^4$		A	
	$C. x^3 + y\sin x - y^4 = y$	D. None of the	ese		
126)	What should be I.F of a non-exact differential equation $(6x^2)$	- · ·	$3x + 3xy^2 dy = 0 \text{ to be an exact?}$		
426)	A. 1/x	B. e^x		D	
	C. x	D. χ^3			
	What should be I.F of a non-exact differential equation $(2x^2)^2$	$\frac{1}{1} + e^x y dx - (e^x + e^x) dx - (e^x + e^x) dx$	y^3) $dy = 0$ to be an exact?		
427)	A. 1/y	B. y^2		D	
	C. 1/x	D. $1/y^2$			
		. 2			

	What	What should be I.F of a linear differential equation $\frac{dx}{dy} + \frac{1}{y \ln y} x = \frac{1}{y}$?				
428)	Α.	1/ y	В.	ln y	В	
		1/x		$1/y^2$		
		t will be particular solution if general solution of an C	I			
429)	A.	$y = \frac{1}{4} - \frac{5}{4} e^{-x^4}$ $y = 4 - 5e^{-x^4}$		$y = \frac{1}{4} + 5e^{-x^4}$	A	
	C.	$y = 4 - 5e^{-x^4}$	D.	None of these		
430)	Deter	rmine the order and degree of the differential equation	$\int 2x \frac{d^4y}{dx^4} dx$	$+5x^2 \left(\frac{dy}{dx}\right)^3 - xy = 0.$	A	
ĺ		Fourth order first degree	B.	Fourth order third degree		
		First order first degree	D.	Third order fourth degree		
		th of the following is the exact differential equation? $(x^2 + 1)dx - xydy = 0$	B.	xdy + (3x - 2y)dx = 0		
431)					C	
		$2xydx + (2+x^2)dy = 0$	D.	$x^2 y dy - y dx = 0$		
		ch of the following is the variable separable equation?			C	
432)	A.	$\left(x + x^2 y\right) dy = \left(2x + xy^2\right) dx$	В.	(x+y)dx - 2ydy = 0		
·	C.	$2ydx = (x^2 + 1)dy$	D.	$y^2 dx + (2x - 3y) dy = 0$		
	The equation $y^2 = cx$ is a general solution of					
	A.	dy = 2y	B.	dy = 2x		
433)		$\frac{\partial}{\partial x} = \frac{\partial}{\partial x}$		$\frac{dy}{dx} = \frac{2x}{y}$		
· ·	C.	$\frac{dy}{dx} = \frac{2y}{x}$ $\frac{dy}{dx} = \frac{x}{2y}$	D.	$\frac{dy}{dx} = \frac{y}{2x}$		
		$v = x^2 dx$ then what is the equation of y in terms of x if	the curve		В	
		$x^2 - 3y + 3 = 0$	В.	$x^3 - 3y + 2 = 0$		
- /		$x^3 + 3y^2 + 2 = 0$	D.	$2y + x^3 + 2 = 0$		
		at is the differential equation of the family of lines par		1 -	В	
435)		ydx - xdy = 0	B.	xdy - ydx = 0		
133)	C.	xdx + ydy = 0	D.	ydx + xdy = 0		
			having th	heir vertices at the origin and their foci on the x-axis?	A	
	A.	2xdy - ydx = 0	В.	xdy + ydx = 0		
436)	C.	2ydx - xdy = 0	D.	$\frac{dy}{dx} - x = 0$		
	Wha	at will be the particular integral of the differential equ	ation (D^2)		D	
437)	A.	$\sin 3x$	В.	$-\cos 3x$		
437)	C.	$-\cos 3x$	D.	$-\sin 3x$		
		5		5		
	What	t will be the particular integral of the differential equa	ation $(D^2 -$	$+1) y = \sin 2x ?$	D	
l	A.	$\sin 2x$	В.	$-\cos 2x$		
438)	C.	$-\cos 2x$	D.	$\sin 2x$		
438)		, 	1			
438)		5		9		
436)	What	5 t will be the particular integral of the differential equa	ation $(D^2 - D^2)$		С	

	C.	$\frac{1}{17}(4\sin 2x - \cos 2x)$	D.	$\frac{\sin 2x}{9} - \frac{\cos 2x}{17}$	
	What	will be the particular integral of the differential equation	$1 \left(D^3 + \frac{1}{2}\right)$		С
4.40)		$\sin 2x - \cos 2x$	B.	$-\cos 2x + 17\sin 2x$	-
440)	C.		D.	$\sin 2x \cos 2x$	
		$-\frac{1}{41}(4\sin 2x + 5\cos 2x)$		9 - 17	
	The	general solution of $y'' + y' - 2y = 0$ is	1		A
441)	A.	$y = c_1 e^x + c_2 e^{-2x}$	В.	$y = c_1 e^{2x} + c_2 e^{-2x}$	
	C.	$y = c_1 e^x + c_2 e^{-x}$	D.	None of these	
		general solution of $y'' - 4y' + 4y = 0$ is			В
442)	A.	$y = c_1 e^x + c_2 e^{-2x}$	B.	$y = (c_1 + c_2 x)e^{2x}$	
ĺ		$y = c_1 e^x + c_2 e^{-x}$	D.	None of these	
		general solution of $y'' + y' - 2y = 0$ is			A
443)			B.	$y = e^{-2x} \left(c_1 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x \right)$	
443)		$y = e^{-\left(c_1 \cos \sqrt{2x + c_2 \sin \sqrt{2x}}\right)}$,	
		$y = c_1 e^x + c_2 e^{-x}$	D.	None of these	
444)	Wha	t will be form of y_p while solving $y'' - 5y' + 4y = 8e^x$ by	y UC n	nethod?	A
	A.	Axe ^x	В.	Ae^x	
		Ax^2e^x	D.	None of these	
445)	What will be form of y_p while solving $a_2y'' + a_1y' + a_0y = 1$ by UC method?				
	A.	A	B.	Ae^x	
	C.	Ax^2e^x	D.	None of these	
446)	What will be form of y_p while solving $a_2y'' + a_1y' + a_0y = 5x + 7$ by UC method?				
	A.	A	B.	Ax + B	
	C.	Ax^2e^x	D.	None of these	
447)	Wha	t will be form of y_p while solving $a_2y'' + a_1y' + a_0y = 3x$	x^2-2b	by UC method?	С
	A.	A	В.	Ax + B	
440)	C.	$Ax^2 + Bx + C$	<u>р.</u>	None of these	-
448)	Wha	t will be form of y_p while solving $a_2y'' + a_1y' + a_0y = 3x$	x^3-2x	by UC method?	A
	A.	$Ax^3 + Bx^2 + Cx + E$	В.	Ax + B	
4.40	C.	$Ax^2 + Bx + C$	D.	None of these	
449)	Wha	t will be form of y_p while solving $a_2y'' + a_1y' + a_0y = \sin \theta$	n5x by		С
	A.	$A\cos x$	В.	$A \sin x + B$	_
450)	C.	$A\cos 5x + B\sin 5x$	D.	None of these	C
430)		t will be form of y_p while solving $a_2y'' + a_1y' + a_0y = cc$	1		
	A.	$A\cos x$ $A\cos 5x + B\sin 5x$	B. D.	$A \sin x + B$ None of these	
451)	Wha	t will be form of y_p while solving $a_2 y'' + a_1 y' + a_0 y = e^3$			С
.01)	A.	Acos x	B.	$Ae^{3x} + B$	4
	C.	Ae^{3x}	D.	None of these	_
452)					В
(32)		t will be form of y_p while solving $a_2y'' + a_1y' + a_0y = xa_0y'' + a_1y' + a_0y'' $			⊣ ້
	A.		В.	$(Ax+B)e^{3x}$	_
	C.	Ae^{3x}	D.	None of these	1
453)	Wha	at will be form of y_p while solving $a_2y'' + a_1y' + a_0y = x$	c^2e^{3x} by	UC method?	C

	A.	$A\cos x$	B.	$(Ax+B)e^{3x}$	
	C.	$\left(Ax^2 + Bx + C\right)e^{3x}$	D.	None of these	
454)	Wha	at will be form of y_p while solving $a_2y'' + a_1y' + a_0y = \epsilon$	$e^{3x} \sin 4$	x by UC method?	С
	A.	$A\cos 4xe^{3x}$	B.	$(Ax+B)e^{3x}$	
	C.	$(A\cos 4x + B\sin 4x)e^{3x}$	D.	None of these	
455)	Wha	at will be form of y_p while solving $a_2y'' + a_1y' + a_0y = 5$	$5x^2 \sin^2 4$	4x by UC method?	С
	A.	$A\cos 4xe^{3x}$	B.	$(Ax+B)e^{3x}$	
	C.	$(Ax^2 + Bx + C)\cos 4x + (Cx^2 + Ex + F)\sin 4x$	D.	None of these	
456)	What	t is y_2 if $y_1 = x^2$ is a solution of $x^2y'' - 3xy' + 4y = 0$?	1		В
	A.	$A\cos 4xe^{3x}$	В.	$x^2 \ln x$	
İ	C.	$4x^3$	D.	None of these	
457)	What	t is y_2 if $y_1 = e^{2x}$ is a solution of $y'' - 4y' + 4y = 0$?	•		A
		xe^{2x}	B.	$x^2 \ln x$	
	C.	$4x^3$	D.	None of these	
458)	What	t is y_2 if $y_1 = \cos 4x$ is a solution of $y'' + 16y = 0$?	•		A
	A.	$\sin 4x$	B.	$x^2 \ln x$	
	C.	$4x^3$	D.	None of these	
459)	What	t is y_2 if $y_1 = \cosh x$ is a solution of $y'' - y = 0$?	II.	,	С
	A.	$\sin 4x$	B.	$x^2 \ln x$	
	C.	sinh x	D.	None of these	
460)	What	t is y_2 if $y_1 = \ln x$ is a solution of $xy'' + y' = 0$?	1		D
	A.	$\sin 4x$	B.	$x^2 \ln x$	
	C.	sinh x	D.	1	
461)	The	partial differential equation $\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + u \frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$ is a			D
	A.	Linear equation of order 2	B.	Non-linear equation of order 1	
	C.	Linear equation of order 1	D.	Non-linear equation of order 2	
462)	The o	order of the differential equation $\left(\frac{d^2y}{dt^2}\right) + \left(\frac{dy}{dt}\right)^3 + y^4 = e^{-\frac{t^2}{2}}$	-t is		В
	A.	1	B.	2	
4.45	C.	[3	D.	4	
463)	The d	differential equation $\frac{d^2y}{dx^2}$ + 16y=0 for y(x) with two bounds	dary co	onditions $\frac{dy}{dx}(x=0) = 1$ and $\frac{dy}{dx}(x=\frac{\pi}{2})=-1$ has	A
	A.	No solution	B.	Exactly one solution	
4.5.4		Exactly two solutions	D.	Infinitely many solutions	
464) 465)		ferential equation is considered to be ordinary if it has one dependent variable	ь	more then one dependent verichle	C
466)		one independent variable	В. D.	more than one dependent variable more than one independent variable	
		has independent variable	۳.	photo than one macpondent variable	D
		0	B.	1	
		Less than 1	D.	More than 1	
468)		mogeneous first order linear constant coefficient ordinal		$cu + x^2 = 0$	C
		$\frac{\partial u}{\partial x} = 0$	В.	$cu + x^-=0$	
	C.	$\frac{\partial u}{\partial x} = \text{cu} + x^2$	D.	$\frac{\partial u}{\partial x} = \frac{c}{u} + x^2$	
469)	The P	P.D.E $\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = f(x, y)$; is known as	1	I	A

A.	laplace equation	В.	heat equation	
C.	poission equation	D.	wave equation	
70) Гhe	solution of a differential equation which is no	ot obtained from t		E
A.	Particular solution	В.	Singular solution	
C.	Complete solution	D.	Auxiliary solution	
⁷ 1) Th	ne differential equation $\frac{dy}{dx} = y^2$ is	·		E
Α.	Linear	В.	Non-linear	
C.	Quasilinear	D.	None of these	
72) Th	the DE formed by $y = a\cos x + b\cos x + 4$ where a	and b are arbitrary		
A.	$(\frac{d^2y}{d^2y})+y=0$	В.		
C.	$\left(\frac{d^2y}{dx^2}\right) + y = 0$ $\left(\frac{d^2y}{dx^2}\right) + y = 4$	D.	$\left(\frac{d^2y}{dx^2}\right)-y=0$ $\left(\frac{d^2y}{dx^2}\right)-y=4$	
			$\left(\frac{1}{dx^2}\right)$ -y=4	
	equation $a_0 x^2 y'' + a_1 x y' + a_2 y = \varphi(x)$ is called:		To 1 1 1	F
A.	Legendre's linear equation	В.	Cauchy's linear equation	
C.	Simultaneous equation	D.	Method of undetermined coefficients	
⁴⁾ Solu	ation of the DE $\frac{dy}{dx}$ = sin(x+y)+ cos(x+y), is			I
	$Log 1+tan\frac{(x+y)}{2} = y+c$	В.	$Log 2+sec\frac{(x+y)}{2} =x+c$	
	Log 1+tan(x+y) = y+c	D.	None of these	
	$= a \cos(\log x) + b \sin(\log x), \text{ then}$	р.	rone of these	I
A A	$\frac{1}{2}\frac{d^2y}{d^2y} = \frac{dy}{dy}$	В.	$\int_{\mathcal{I}} d^2 y dy$	
1 1.	$x^2 \frac{1}{dx^2} + x \frac{1}{dx} + y = 0$		$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0$	
C.	$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = 0$ $x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} - y = 0$	D.	none of these	
6) [f y=	$=\sin(a\sin^{-1}x)$, then	<u> </u>		1
A.	$(1 y^2) \frac{d^2y}{d^2y} y \frac{dy}{dy} + 3^2 y = 0$	В.	$(1-x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - a^2 y = 0$	
	$\frac{(1-x)}{dx^2} \frac{1}{dx} + a y=0$		the text	
C.	$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + a^2 y = 0$ $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2 y = 0$	D.	None of these	
7) [The	DE of the family of curves $y^2 = 4a(x+a)$ is			I
A.	$y^2 = 4\frac{dy}{dx}(x + \frac{dy}{dx})$	В.	$y^2 \left(\frac{dy}{dx}\right)^2 + 2xy \frac{dy}{dx} - y^2 = 0$	
C.	$y^{2}\frac{dx}{dx} + 4y = 0$	D.	$2y\frac{dx}{dx} + 4a = 0$	
		Γ.	$2y\frac{dy}{dx} + 4a = 0$	
· ·	erse derivative of sin x is	Ь	1	A
A.	$\frac{1}{\sqrt{1-x^2}}$	В.	$\frac{1}{\sqrt{1+x^2}}$	
	• "			
C.		D.	None of these	
	$\sqrt{1-x^2}$			
9) Inve	erse derivative of cos x is		<u> </u>	-
A.	1	В.	1	`
	$\sqrt{1-x^2}$		$\sqrt{1+x^2}$	
C.	$\frac{-1}{\sqrt{1-x^2}}$	D.	None of these	
0) If v-	$= \tan^{-1} x^{3/2}$, then $\frac{dy}{dx} =$			1
	65%	<u> </u>	2/2	
A.	$\frac{3\sqrt{x}}{2(1+x^3)}$	В.	$\frac{2\sqrt{x}}{(1+x^3)}$	
	2(1.2)		(1.00)	
C.	$3\sqrt{x}$	D.	None of these	
	$2(1-x^3)$			
1)	420			-
The	equation of the curves, satisfying the DE $\frac{d^2y}{dx^2}$	$\frac{1}{2}(x^2+1) = 2x\frac{dy}{dx}$	$\frac{y}{x}$ passing through the point (0,1) and having the slope of	
	gent at x=0 as 6 is			
Α.	$y^{2} = 2x^{3} + 6x + 1$ $y^{2} = x^{3} + 6x + 1$	В.	$y = 2x^3 + 6x + 1$	
	$1 \cdot 1^2 - 1 \cdot 1^3 + 1 \cdot 1 \cdot 1 = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot$	Ъ	None of these	1
C.		υ.	ule $\frac{dx}{dt}$ = x+4. The time taken by the particle to traverse a	

	A.	ln 5	В.	$\log_5 e$	
	C.	2 ln 5	D.	None of these	
483)	If y=0	$\cos^{-1}(\ln x)$, then the value of $\frac{dy}{dx}$ is			В
	A.	1	В.	-1	
		$\sqrt{1-(\ln x)^2}$		$\frac{1}{x\sqrt{1-(\ln x)^2}}$	
	C.	$\frac{x\sqrt{1-(\ln x)^2}}{\frac{-1}{x\sqrt{1+(\ln x)^2}}}$	D.	None of these	
40.4)					
484)		$2 \ln \cot(t)$ and $y = \tan(t) + \cot(t)$, the value of $\frac{dy}{dx}$ is			A
		cot(2t) cos(2t)	В. D.	tan(2t)	
485)		ion of the DE $\ln(\frac{dy}{dx}) = ax + by$ is	υ.	sec(2t)	A
	A	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	В	$\frac{1}{a} - by - \frac{1}{a} ax + a$	
	C	$-\frac{1}{b}e^{-by} = \frac{1}{a}e^{ax} + c$ $\frac{1}{b}e^{-by} = -\frac{1}{a}e^{ax} + c$	<u> </u>	$\frac{\frac{1}{b}e^{-by} = \frac{1}{a}e^{ax} + c}{-\frac{1}{b}e^{-by} = -\frac{1}{a}e^{ax} + c}$	
		D a		I D a	
		general solution of a differential equation is $(y+c)^2=c$ rential equation is	x, wher	re c is an arbitrary constant, then the order and degree of	A
	A. C.		В.	2, 1	
			D.	None of these	
	Solut	ion of $(x^2 \sin^3 y - y^2 \cos x) dx + (x^3 \cos y \sin^2 y - 2y \sin^2 y - 2y \sin^2 y + 3y \cos^2 y + 3y$		=0 is	C
	A.	$(X^3 \sin^3 y/3) = c$	В.	$x^3 \sin^3 y = y^2 \sin x + c$	
488)	C.	$(X^{3}\sin^{3}y/3) = y^{2}\sin x + c$ ion of $\frac{x dy}{x^{2} + y^{2}} = (\frac{y}{x^{2} + y^{2}} - 1)dx$ is	ρ.	None of these	С
.00)	Solut	$\frac{1}{x^2 + y^2} - (\frac{1}{x^2 + y^2} - 1) dx \text{ is}$	<u> </u>	V	
	A.	$x - \tan^{-1} \frac{y}{x}$	В.	$\tan^{-1} \frac{y}{x} = c$ None of these	
	C.	$x - \tan^{-1} \frac{y}{x}$ $x \tan^{-1} \frac{y}{x} = c$	D.	None of these	
489)	Solut	ion of $(y + x^{\sqrt{xy}}(x+y))dx + (y^{\sqrt{xy}}(x+y) - x)dy$	= 0 is		D
	A.	$x^{2} + y^{2} = 2 \tan^{-1} \sqrt{\frac{y}{x} + c}$ $x^{2} + y^{2} = \tan^{-1} \sqrt{\frac{y}{x} + c}$	В.	$x^2 + y^2 = 4 \tan^{-1} \sqrt{\frac{y}{x} + c}$ None of these	
	C.	$x^2 + y^2 = \tan^{-1} \sqrt{\frac{y}{x} + c}$	D.	None of these	
490)	Solut	ion of the DE $\frac{dy}{dx} + 2xy = y$ is		1	
	A.	$v = ce^{x-x^2}$	В.	$y = c \rho^{\chi^2} - \chi$	
	C.	$y = ce^{x-x^2}$ $y = ce^x$	D.	$y = ce^{x^2} - x$ None of these	
491)	Calmt	ion of the differential equation $\frac{dy}{dx} = \sin(x + x) + \cos(x + x)$	1/2c 27) ;;	D
491)		ion of the differential equation $\frac{dy}{dx} = \sin(x+y) + \cos(x+y)$			D
491)	A.	$\log 1 + \tan\frac{(x+y)}{2} = y + c$	В.	$\log 2 + \sec\frac{(x+y)}{2} = x + c$	D
	A. C.	$\log 1 + \tan \frac{(x+y)}{2} = y + c$ $\log 1 + \tan (x + y) = y + c$			D B
	A. C. The F	$\log 1 + \tan \frac{(x+y)}{2} = y + c$ $\log 1 + \tan (x+y) = y + c$ Blasius equation $\frac{d^3 f}{d\eta^3} + \frac{f}{2} \frac{d^2 f}{d\eta^2} = 0 \text{ is a}$	B. D.	$\log 2 + \sec \frac{(x+y)}{2} = x + c$ None of these	
	A. C. The F	$\log 1 + \tan \frac{(x+y)}{2} = y + c$ $\log 1 + \tan (x + y) = y + c$ Blasius equation $\frac{d^3 f}{d\eta^3} + \frac{f}{2} \frac{d^2 f}{d\eta^2} = 0 \text{ is a}$ Second order non-linear differential equation	В. D. В.	$\log 2 + \sec \frac{(x+y)}{2} = x + c$ None of these Third order non-linear ordinary differential equation	
492)	A. C. The F A. C.	$\log 1 + \tan \frac{(x+y)}{2} = y + c$ $\log 1 + \tan (x+y) = y + c$ Blasius equation $\frac{d^3f}{d\eta^3} + \frac{f}{2} \frac{d^2f}{d\eta^2} = 0 \text{ is a}$ Second order non-linear differential equation} Third order linear ordinary differential equation	В. D. В. D.	$\log 2 + \sec \frac{(x+y)}{2} = x + c$ None of these Third order non-linear ordinary differential equation Mixed order non-linear ODE	
492)	A. C. The F A. C.	$\log 1 + \tan \frac{(x+y)}{2} = y + c$ $\log 1 + \tan (x + y) = y + c$ Blasius equation $\frac{d^3 f}{d\eta^3} + \frac{f}{2} \frac{d^2 f}{d\eta^2} = 0 \text{ is a}$ Second order non-linear differential equation	В. D. В. D.	$\log 2 + \sec \frac{(x+y)}{2} = x + c$ None of these Third order non-linear ordinary differential equation Mixed order non-linear ODE	В
492)	A. C. The F A. C. The g A.	$\log 1 + \tan \frac{(x+y)}{2} = y + c$ $\log 1 + \tan (x+y) = y + c$ Blasius equation $\frac{d^3f}{dn^3} + \frac{f}{2} \frac{d^2f}{dn^2} = 0 \text{ is a}$ Second order non-linear differential equation} Third order linear ordinary differential equation general solution of DE $\frac{dy}{dx} = \cos(x+y) \text{ with c as a constant } y + \sin(x+y) = x + c$	B. D. B. D. nstant i	$\log 2 + \sec \frac{(x+y)}{2} = x + c$ None of these Third order non-linear ordinary differential equation Mixed order non-linear ODE s $\tan \left(\frac{x+y}{2}\right) = y + c$	В
492)	A. C. The F A. C. The g A. C.	$\log 1 + \tan \frac{(x+y)}{2} = y + c$ $\log 1 + \tan (x + y) = y + c$ Blasius equation $\frac{d^3f}{d\eta^3} + \frac{f}{2} \frac{d^2f}{d\eta^2} = 0 \text{ is a}$ Second order non-linear differential equation} Third order linear ordinary differential equation general solution of DE $\frac{dy}{dx} = \cos(x + y) \text{ with c as a constant}$ $y + \sin (x + y) = x + c$ $\cos \left(\frac{x+y}{2}\right) = x + c$	B. D. B. D. stant i B. D.	$\log 2 + \sec \frac{(x+y)}{2} = x + c$ None of these Third order non-linear ordinary differential equation Mixed order non-linear ODE	В
492)	A. C. The F A. C. The g A. C. The s	$\log 1 + \tan \frac{(x+y)}{2} = y + c$ $\log 1 + \tan (x+y) = y + c$ Blasius equation $\frac{d^3f}{d\eta^3} + \frac{f}{2} \frac{d^2f}{d\eta^2} = 0 \text{ is a}$ Second order non-linear differential equation Third order linear ordinary differential equation general solution of DE $\frac{dy}{dx} = \cos(x+y) \text{ with c as a cos}$ $y + \sin (x+y) = x + c$ $\cos \left(\frac{x+y}{2}\right) = x + c$ olution of the initial value problem $\frac{dy}{dx} = -2xy; y(0)$	B. D. D. nstant i B. D. = 2 is	$\log 2 + \sec \frac{(x+y)}{2} = x + c$ None of these Third order non-linear ordinary differential equation Mixed order non-linear ODE s $\tan \left(\frac{x+y}{2}\right) = y + c$ $\tan \left(\frac{x+y}{2}\right) = x + c$	B D
492)	A. C. The F A. C. The g A. C. The s	$\log 1 + \tan \frac{(x+y)}{2} = y + c$ $\log 1 + \tan (x + y) = y + c$ Blasius equation $\frac{d^3f}{d\eta^3} + \frac{f}{2} \frac{d^2f}{d\eta^2} = 0 \text{ is a}$ Second order non-linear differential equation} Third order linear ordinary differential equation general solution of DE $\frac{dy}{dx} = \cos(x + y) \text{ with c as a constant}$ $y + \sin (x + y) = x + c$ $\cos \left(\frac{x+y}{2}\right) = x + c$	B. D. B. D. stant i B. D.	$\log 2 + \sec \frac{(x+y)}{2} = x + c$ None of these Third order non-linear ordinary differential equation Mixed order non-linear ODE s $\tan \left(\frac{x+y}{2}\right) = y + c$	B D

	4 .	$y = c_1 e^{-3x} + c_2 e^{2x}$	В.	$y \equiv c_1 e^{3x} + c_2 e^{2x}$	
(Z.	$y = c_1 e^{-3x} + c_2 e^{2x}$ $y = c_1 e^{3x} + c_2 e^{-2x}$	B. D.	$y = c_1 e^{3x} + c_2 e^{2x}$ $y = e^{-3x} + e^{2x}$	
496) I	The se	olution for the differential equation $\frac{dy}{dx} = x^2y$ with two	condit	ion that y=1 at x=0	С
I	Α.	$2e^{\frac{x^2}{2}}$	В.	$3e^{\frac{x}{2}}$	
(C.	$e^{\frac{x^2}{2}}$	D.	$3e^{\frac{x^2}{2}}$	
497) _I	The so	olution of $\frac{dy}{dx} = -\frac{x}{y}$ with initial condition y(1)= $\sqrt{3}$ is $x^3 + y^3 = 4$ $x^2 + y^2 = 4$	-1	pe -	С
	A .	$x^3 + y^3 = 4$	В.	y = 4ax	
(J.	$x^2 + y^2 = 4$	D.	None of these	
		$\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt$, then what is $L\{1\}$?			A
	Α.	1	В.	$\frac{1}{s^2}$	
		S			
400)	С.	S	D.	None of these	D
499)	If L	$\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt$, then what is $L\{t\}$?			В
I	Α.	1	В.	1	
	~	S		s^2	
	Z	<u>S</u>	D.	None of these	C
		$\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt$, then what is $L\{t^{n}\}$?			
I	A .	$\frac{1}{s}$	В.	$\frac{1}{s^2}$	
	C.		D.	None of these	
	. .	$\frac{n!}{s^{n+1}}$	D.	None of these	
501)	If I	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L\left\{\frac{1}{\sqrt{\pi}t}\right\}?$			A
7	A .	$\frac{1}{\sqrt{s}}$	В.	$\frac{1}{s^2}$	
C	C.	$\frac{n!}{s^{n+1}}$	D.	None of these	
502)	If I	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L\{te^{at}\}?$	1		С
1	A .	1	В.	1	
		\sqrt{s}		$\overline{s^2}$	
(C.	$\frac{1}{\left(s-a\right)^2}$	D.	None of these	
503)	If I	$\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L\{\cos at\}?$	<u> </u>		В
l			L	1	
	A .	\\ \frac{1}{F}	В.	$\frac{s}{s^2 + a^2}$	
	~	√s			
	C.	$\frac{1}{\left(s-a\right)^2}$	D.	None of these	
504)		$\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt$, then what is $L\{\cosh at\}$?			В
	n L	$\{J(i)\} = \begin{cases} 1 & \text{if } i \text{ if } i \text{ what is } L \{\cos i \text{ ai}\} \end{cases}$			

r .				
A.	$\frac{1}{\sqrt{s}}$	В.	$\frac{s}{s^2-a^2}$	
C.	√s 1	D.	s - a None of these	
	$\left \frac{1}{\left(s-a\right)^2}\right $			
505) If	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L\{e^{at} \sinh t\}?$	1		A
A.	h	В.	S	
	$\frac{\left(s-a\right)^2 + b^2}{\left(s-a\right)^2 + b^2}$		$\frac{s}{s^2 - a^2}$	
C.	a	D.	None of these	
	$\overline{\left(s-a\right)^2+b^2}$			
506) If <i>I</i>	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L\{t \sin a t\}?$			С
A.	h	В.	S	
	$\overline{\left(s-a\right)^2+b^2}$		$\frac{s}{s^2 - a^2}$	
C.	$\frac{2as}{\left(s^2+a^2\right)^2}$	D.	None of these	
	$\left(s^2+a^2\right)^2$			
	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L\{1 - \cos at\}?$	1		A
A.	a^2	В.	S	
	$\frac{a^2}{s(s^2+a^2)}$		$\frac{s}{s^2 - a^2}$	
C.		D.	None of these	
	$\frac{2as}{\left(s^2+a^2\right)^2}$			
508) If <i>L</i>	$\left\{f\left(t\right)\right\} = \int_{0}^{\infty} e^{-st} f\left(t\right) dt, \text{ then what is } L\left\{t^{\alpha}\right\}, \alpha > -1?$			A
A.	$\Gamma(\alpha+1)$	В.	α	
	$\frac{\sqrt{s}^{n+1}}{s}$		$\frac{\alpha}{s^2 - \alpha^2}$	
C.	<u>2as</u>	D.	None of these	
	$\left(s^2+a^2\right)^2$			
509) If	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L\{e^{at}\}?$			С
A.	a^2	В.		1
	$\frac{a^2}{s(s^2+a^2)}$ $\frac{1}{(s-a)}$		$\frac{s}{s^2 - a^2}$	
C.	1_	D.	None of these	
	(s-a)			
510) If	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L\{\sin at\}?$			В
A.	a ²	В.	_ a	1
	$\frac{a}{s(s^2+a^2)}$ $\frac{1}{(s-a)}$		$\frac{a}{s^2 + a^2}$	
C.	1	D.	None of these	1
	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L\{\sinh at\}?$			В
	0			

	A.	$\frac{a^2}{s(s^2+a^2)}$	В.	$\frac{a}{s^2-a^2}$	
		$s(s^2+a^2)$		s^2-a^2	
	C.	1	D.	None of these	
		$\frac{1}{(s-a)}$			
512)					C
312)	If L	$\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt$, then what is $L\{t^{n}e^{at}\}$?			
	A.	a^2	B.	a	
		$\frac{a^2}{s(s^2+a^2)}$		$\frac{a}{s^2 - a^2}$	
	C	n!	D.	None of these	
	C.	$\frac{n!}{\left(s-a\right)^{n+1}}$	<i>D</i> .	Trone of these	
513)		$\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt$, then what is $L\{e^{at}\cos bt\}$?		1	В
	A.	a^2	В.	S-a	
		$\frac{a}{s(s^2+a^2)}$		$\frac{s-a}{\left(s-a\right)^2+b^2}$	
		3(3 + 4)			
	C.	$\frac{a^2}{s(s^2+a^2)}$ $\frac{n!}{(s-a)^{n+1}}$	D.	None of these	
		$(s-a)^{n+1}$			
514)	If L	$\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt$, then what is $L\{t\cos at\}$?			A
			Ь	1	
	A.	$\frac{s^2-a^2}{a^2}$	В.	$\frac{s-a}{\left(s-a\right)^2+b^2}$	
		$\left(\left(s^2+a^2\right)^2\right)$		$(s-a)^2+b^2$	
	C.	n!	D.	None of these	
		$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$ $\frac{n!}{\left(s - a\right)^{n+1}}$			
515)	If L	$\left\{ f(t) \right\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L \left\{ \int_{0}^{t} f(u) du \right\} ?$			С
	2	$ (f(t)) \int_{0}^{t} f(t)dt, \text{ alon what is } E\left[\int_{0}^{t} f(t)dt\right]. $			
			B.	s-a	
		$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$		$\frac{s-a}{\left(s-a\right)^2+b^2}$	
	C		D.	None of these	
	C.	$\left \frac{1}{s}F(s)\right $	D.	None of these	
516)	If L	$\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt$, then what is $L\left\{\frac{f(t)}{t}\right\}$?	1	1	В
		()			
	A.	s^2-a^2	В.	$\int_{0}^{\infty} F(u) du$	
		$\overline{\left(s^2+a^2\right)^2}$		s s	
	C.	1	D.	None of these	
	C.	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$ $\frac{1}{s}F(s)$	J.	Trone of these	
517)	If I	$\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt$, then what is $L\{f'(t)\}$?			A
	11 1		_		
	A.	sF(s)-f(0)	В.	$\int_{0}^{\infty} F(u) du$	
				s	
	C.	$\frac{1}{s}F(s)$	D.	None of these	
		~			
518)	If I	$\{f(t)\}=\int_{0}^{\infty}e^{-st}f(t)dt$, then what is $L\{at-\sin t\}$?			В
		$\{J(i)\} = \{J(i)\}$ in the value is $E\{ui \in Sini\}$:			

	T _A		b	2	
	A.	sF(s)-f(0)	В.	$\frac{a^3}{s^2(s^2+a^2)}$	
	C		<u> </u>	,	
	C.	$\frac{1}{s}F(s)$	D.	None of these	
519)		$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt, \text{ then what is } L\{\cosh at - \cos at\}$: } ?		С
		sF(s)-f(0)	В.	a^3	
				$\frac{a^3}{s^2\left(s^2+a^2\right)}$	
	C.	$2a^2s$	D.	None of these	
		$\overline{s^4-a^4}$			
520)	If L	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt \text{ and } L^{-1}\{F(s)\} = f(t) \text{ then what}$	at is L^{-1}	${F(s-a)}$?	A
	A.	$e^{at}f(t)$	В.		
				$\frac{a^3}{s^2\left(s^2+a^2\right)}$	
	C.	$\frac{2a^2s}{s^4-a^4}$	D.	None of these	
521)	_	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt \text{ and } L^{-1}\{F(s)\} = f(t) \text{ then what}$	at is L^{-1}	${F(cs)}$?	В
	A.	$e^{at}f(t)$	В.	$\frac{1}{c}f\left(\frac{t}{c}\right)$	
	C.	$\frac{2a^2s}{s^4-a^4}$	D.	None of these	
522)		$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt \text{ and } L^{-1}\{F(s)\} = f(t) \text{ then what}$	at is L^{-1}	$\left\{F^{(n)}(s)\right\}$?	С
	A.	$e^{at}f(t)$	В.	$\frac{1}{c}f\left(\frac{t}{c}\right)$	
	C.	$\left(-1\right)^{n}t^{n}f\left(t\right)$	D.	None of these	
523)		$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt \text{ and } L^{-1}\{F(s)\} = f(t) \text{ then what}$	at is L^{-1}	$\left\{\frac{F(s)}{s}\right\}$?	С
	A.	$e^{at}f(t)$	В.	$\frac{1}{c}f\left(\frac{t}{c}\right)$	
	C.	$\int_{0}^{t} f(u) du$	D.	None of these	
524)	If L	$L\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) dt \text{ and } L^{-1}\{F(s)\} = f(t) \text{ then what}$	at is L^{-1}	$\left\{e^{-as}F(s)\right\}$?	В
	A.	$e^{at}f(t)$	В.	$u_a(t) f(t-a)$	
	C.	$\int_{0}^{t} f(u) du$	D.	None of these	
525)	The	solution of $(D^2 + 4D + 3)y = 0$ is			A
	A.	$y = c_1 e^{-x} + c_2 e^{-3x}$	В.	$y = c_1 e^{-4x} + c_2 e^{-3x}$	
	C.	$y = c_1 e^{-x} + c_2 e^{-2x}$	D.	None of these	
526)	The	solution of $(D^3 - 5D^2 + 7D - 3)y = 0$ is			В
	A.	$y = c_1 e^{-x} + c_2 e^{-3x}$	В.	$y = (c_1 + c_2 x)e^x + c_3 e^{3x}$	

C.	$y = c_1 e^{-x} + c_2 e^{-2x} + c_3 e^{-3x}$	D.	None of these	
527) _T	The solution of $(D^3 - D^2 + D - 1)y = 0$ is	1		С
	A. $y = c_1 e^{-x} + c_2 e^{-3x}$	В.	$y = (c_1 + c^2 x)e^x + c_3 e^{3x}$	
	$\sum_{x} y = c_1 e^x + c_2 \sin x + c_3 \cos x$	D.	None of these	-
528) т	The solution of $(D^2 + D - 12)y = 0$ is			A
		<u> </u>	A., 2.,	
A	A. $y = c_1 e^{3x} + c_2 e^{-4x}$ C. $y = c_1 e^{-x} + c_2 e^{-2x}$	В.	$y = c_1 e^{-4x} + c_2 e^{-3x}$	
		D.	None of these	
529) _T	The solution of $(D^2 + 4D + 5)y = 0$ is			C
A	A. $y = c_1 e^{3x} + c_2 e^{-4x}$	В.	$y = c_1 e^{-4x} + c_2 e^{-3x}$	
C.	$y = e^{-2x} \left(c_1 \sin x + c_2 \cos x \right)$	D.	None of these	
	The solution of $(D^3 - 3D^2 + 4)y = 0$ is			В
	A. $y = c_1 e^{-x} + c_2 e^{-3x}$	В.	$y = (c_1 + c_2 x)e^{2x} + c_3 e^{-x}$	
C	$y = c_1 e^{-x} + c_2 e^{-2x} + c_3 e^{-3x}$	D.	None of these	
		Ρ.	Notice of these	Α
331) T	The solution of $(9D^2 - 12D + 4)y = 0$ is			A
A	A. $y = (c_1 + c_2 x)e^{\frac{2}{3}x}$ C. $y = c_1 e^{-x} + c_2 e^{-2x} + c_3 e^{-3x}$	В.	$y = (c_1 + c_2 x)e^{2x} + c_3 e^{-x}$	
C	$\frac{y - (c_1 + c_2 x)c}{c_2 x + c_2 c_2 x + c_2 c_2 c_3 x}$	D.	None of these	
532) #	$y = c_1 e^{-t} + c_2 e^{-t} + c_3 e^{-t}$	Ρ.	tone of these	C
332) 1	The solution of $(D^3 - 4D^2 + D + 6)y = 0$ is			
A	A. $y = (c_1 + c_2 x)e^{\frac{2}{3}x}$	В.	$y = (c_1 + c_2 x)e^{2x} + c_3 e^{-x}$	
C.	$y = c_1 e^{-x} + c_2 e^{2x} + c_3 e^{3x}$	D.	None of these	
	Which of these is the solution of differential equation $\frac{dx}{dt} + 3$	3x = 0)	A
A	24	B.	e^{-3t}	
C.	$C. 2e^{2t}$	D.	e^{-2t}	
534) _T	The general solution of DE $\frac{dy}{dx} = \frac{y}{x}$ is			В
A	$A = \log v = kx$	В.	y=kx	
C.	$y = \frac{k}{x}$	D.	y=k log x	
535) _{I1}	Integrating factor of DE $\cos \frac{dy}{dx} + y \sin x = 1$ is	I .		В
A	A. $\sin x$	В.	sec x	
C.	C. tan x	D.	cos x	
536) It	If $2xy dx + P(x, y)dy = 0$ is exact then $P(x, y)$ is			D
A	A. $x-y$	B.	x+y	
C.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D.	$x^2 + y$	
537) A	A differential equation of first degree	Ь	Management had been	B
C	A. Is of first order C. Always linear	B. D.	May or may not be linear All are false	
538) A	A general solution of an n th order differential equation conta		µ m m m m m m m m m m m m m m m m m m m	В
A.	A. n – 1 arbitrary constants	В.	n arbitrary constants	7
C.	c. n+1 arbitrary constants	D.	no constant	
Т	The order of the differential equation $\frac{\partial^2 y}{\partial x^2} + y^2 = x + e^x$ is			A
A		В.	3	
C.		D.	1	
539) ''	"Infinitely many differential equation have the same integra	ating fa	actor". This statement is	D
A		В.	May be true	
C.	C. Semi true	D.	Always true	

40)	If $\frac{dy}{dx} = \frac{f(x,y)}{x}$ is a homogeneous DE then it can be a	nade in the form ''separable in variables'' by putting	С
	A. $ \mathbf{y}^2 = \mathbf{v}\mathbf{x}$		
		B. x ² =vy	
7(1)	C. y=vx	D. k=vy	D
41)	The differential equation $\frac{dy}{dx} + Py = Qy^n$, $n \ge 2$ can	be reduced to linear form by substituting	
	A. $z=y^{n-1}$	B. $z=y^n$	
10)	$C. x=y^{n+1}$	D. x=y ¹⁻ⁿ	
42)	The differential equation $(y-2x^3)dx - x(1-xy)$	- 1	В
	$A. \mid \frac{1}{-}$	$\frac{1}{x^2}$	
	C. 1	$\frac{1}{1}$	
	$\left[\begin{array}{cc} \frac{1}{r^3} \end{array}\right]$	D. $\frac{1}{r^4}$	
43)	If the DE $f(x, y)dx + x\sin y dy = 0$ is exact then $f(x, y) = 0$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	В
,	A. cos y	B. $-\cos(y) + x^2$	
	C. –sin y	D. $Sin(y) + x$	
44)		F - P-11() / 11	D
	tt x	b k:	
	A. Exact	B. Linear	
15)	C. Homogeneous	D. All of above	
45)	The general solution of the equation $x' + 5x = 3$ is	D (1/4) 2 + C = 1/2	C
	A. $x(t) = \frac{3}{5} + e^{-5t}$ C. $x(t) = \frac{3}{5} + Ce^{-5t}$	$8. x(t) = 3 + C \sin 5t$	
	C 3	D. $x(t) = C \cos 3t$	
	$x(t) = \frac{3}{5} + Ce^{-5t}$	$D. \qquad \chi(t) = c \cos 3t$	
16)	A solution of the initial value problem $y' + 8y = 1$	$+ \rho^{-6t}$ is	В
10)	A solution of the initial value problem $y + 0y = 1$ A. $\begin{pmatrix} 1 & 1 & 6 & 5 \\ 0 & 1 & 1 & 6 \end{pmatrix}$		
	$x(t) = \frac{1}{9} + \frac{1}{2}e^{6t} - \frac{3}{9}e^{8t}$	$x(t) = \frac{1}{9} + \frac{1}{2}e^{-6t} - \frac{3}{9}e^{-8t}$	
	A. $x(t) = \frac{1}{8} + \frac{1}{2}e^{6t} - \frac{5}{8}e^{8t}$ C. $x(t) = 4 - e^{2t} + 3e^{8t}$	B. $x(t) = \frac{1}{8} + \frac{1}{2}e^{-6t} - \frac{5}{8}e^{-8t}$ D. $x(t) = 4 - e^{-2t} + 3e^{-8t}$	
47)			A
.,,	A. e^{-3x} And e^{2x}	B. e^{-2x} And e^{3x}	
	C. e^{-x} And e^{6x}	D. e^{-6x} And e^x	
48)			D
,	A. $A + B \sin x$	B. $A + Bx^2 + C\cos x + D\sin x$	
	C. $A + Bx \cos x + Cx \sin x$	D. $A + B \cos x + C \sin x$	
49)	The solution of the initial value problem $x^2y'' - xy$	y' - 3y = 0, $y(1) = 1$, $y'(1) = -2$ is	A
,		1 1 0	
	A. $\left \frac{5}{4} x^{-1} - \frac{1}{4} x^3 \right $	B. $\left \frac{1}{4}x + \frac{3}{4}x^{-3} \right $	
	C. $\frac{5}{-e^{-x}} - \frac{1}{-e^{3x}}$	D. $\frac{1}{-}e^x + \frac{3}{-}e^{-3x}$	
	$\left \frac{1}{4}e^{-x} - \frac{1}{4}e^{3x} \right $	$\left \frac{1}{4}e^{x} + \frac{1}{4}e^{-3x} \right $	
50)	The differential equation $x'' + 2x' - 5x = \sin t$ is	equivalent to the system	A
	A. $x' = y$, $y' = 5x - 2y + \sin t$	$B. x' = 2x - 5y, y' = \sin t$	
	C. $x' = y$, $y' = 2x - 5y + \sin t$	$D. x' = 5x - 2y , y' = \sin t$	
51)		equivalent to a 1 st order system consisting of	D
	A. One equation x^2+y^2 x^2+y^2	B. Two equations	
	C. Three equations	D. Four equations	
52)	The series solution for the DE $y'' + xy' + y = 0$ is of		В
,2)	A. $C_{n+2} + C_{n+1} + C_n = 0, n \ge 0$	B. $(c+2)C_{n+2} + C_n = 0, n \ge 2$	b
	C. $nc_{n+1} - c_n = 0, n \ge 0$	D. $C_n = 0, n \ge 3$	
53)	The differential equation $xy'' + (x-2)y' + y = 0$		C
,,,	A. $y = x^2 \sum_{n=0}^{\infty} c_n x^n, c_0 \neq 0$	R $v = v^{1/2} \nabla^{\infty}$ $c \times^n c \neq 0$	
	A. $y = x^{-} \sum_{n=0}^{\infty} c_n x^{-n}, c_0 \neq 0$ C. $y = x^{3} \sum_{n=0}^{\infty} c_n x^{n}, c_0 \neq 0$	B. $y = x^{1/2} \sum_{n=0}^{\infty} c_n x^n, c_0 \neq 0$ D. $y = x^{-1} \sum_{n=0}^{\infty} c_n x^n, c_0 \neq 0$	
(1)	The solution of the DE(2x 1)x/ + 2x = 0	p. $y - x$ $\sum_{n=0}^{\infty} c_n x^n, c_0 \neq 0$	vergence C
		represented as a power series $\sum_{n=0}^{\infty} C_n X^n$ with radius of con	vergence C
	equal to	D 1/2	
	A. 0	B. 1/2	
	C. [1	D. ∞	
55)	The partial fraction decomposition of $\frac{s+4}{(s-1)^2(s^2+4)}$ is		В

		A D C	<u> </u>	A D C + D	
	A.	$\frac{A}{(s-1)^2} + \frac{B_s + C}{s^2 + 4}$ $\frac{A}{s-1} + \frac{B}{(s-1)^2} + \frac{C}{s^2 + 4}$	В.	$\frac{A}{s-1} + \frac{B}{(s-1)^2} + \frac{C_s + D}{s^2 + 4}$ $\frac{A}{s-1} + \frac{B}{(s-1)^2} + \frac{C_s}{s^2 + 4}$ Acquations?	
		$(s-1)^2$ $s^2 + 4$		$s-1 \cdot (s-1)^2 \cdot s^2 + 4$	
	C.	$\frac{A}{A} + \frac{B}{A} + \frac{C}{A}$	D.	$A + B + C_s$	
		$(s-1)^2 + s^2 + 4$		$ s-1 (s-1)^2 s^2+4$	
556)	Whi	ch of the following equations can be rearranged into sep	arable	equations:	В
	A.	(x+y)y' = x - y	B.	$y' - e^y = e^{x = y}$	
	C.	y' = ln(xy)	D.	None of these	
557)	The	appropriate form of a particular solution y_p of the equat	tion y"	$y' + 2y' + y = e^{-t}$ is	С
	Α.	Ae^{-t}	В.	Ate^{-t}	
	C	Ae^{-t} At^2e^{-t}	D	$(A+Bt)e^{-t}$	
558)	Partic	ular integral of $(D^2 + 4)y = \sin 3x$ is	٥.	(11 + 20)0	С
330)	Λ	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	В.	1	\dashv
	Λ.	$-\frac{1}{\pi}\sin 3x$	Б.	$-\frac{1}{5}\cos 3x$	
	С	$-\frac{1}{5}sin3x$ $-\frac{1}{5}tan3x$	D.	None of these	
	C.	$-\frac{1}{\pi}tan3x$	D.	tione of these	
550)		$\frac{1}{dy} = \frac{5}{r^2 + ry + 2y^2}$			В
339)	The D	$D.E \frac{dy}{dx} = \frac{x^2 + xy + 2y^2}{2x^2 + y^2} \text{ is}$			l D
		Exact	B.	Homogenous	
		Cauchy	D.	None of these	
560)		1.		tione of these	D
300)	The	order and degree of the D.E $\left(\frac{1+\left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{2}}\right)^{\frac{3}{2}}$ =b are respecti	vely		
		$\frac{d^2y}{dx^2}$	-		
	A.	1 and 3	B.	1 and 2	
		3 and 2	D.	2 and 3	
561)		neral solution of 3 rd order D.E contains			С
301)		One constant	B.	Two constants	\dashv
		Three constants	<u>b.</u>	No constants	
562)			ρ.	µ40 Constant	В
562)	SOIV	$\lim_{y \to 0} y' + y' + 2y = 0$ with $y(0), y(1) = 1$ is	Ь	D 1	— В
		Initial value problem	В.	Boundary value problem	
7.50		Eigen value problem	ρ.	None of these	
563)	If p ar	and q are the order and degree of D.E $y \frac{dy}{dx} + x^2 (\frac{d^2y}{dx^2})^3 +$	xy =	cosx, then	A
	Δ	p < q	R	p = q	
	C.	p > q	<u>D.</u>	None of these	
564)	C.		ρ.	profile of these	D
304)	A solı	ution to the partial differential equation $\frac{\partial^2 u}{\partial x^2} = 9 \frac{\partial^2 u}{\partial y^2}$ is			D
I	A.	$\cos(3x-y)$	B.	$x^2 + y^2$	
	C.	$\sin(3x - y)$	D.	$e^{-3\pi x}\sin(\pi x)$	
					Α
565)	The p	artial differential equation $5 \frac{\partial^2 z}{\partial x^2} + 6 \frac{\partial^2 z}{\partial y^2} = xy$ is classif	fied as		A
		Elliptic	B.	Parabola	
		Hyperbola	D.	None of above	
566)			ν.	profic of above	В
566)	The p	artial differential equation $xy \frac{\partial z}{\partial x} = 5 \frac{\partial^2 z}{\partial y^2}$ is			Ь
		Elliptic	B.	Parabola	
		Hyperbola	D.	None of above	
567)			lation I	under non-linear mechanics known as the Kortewege-de-	В
		2	auon t	ander non inical incendines known as the Northwege-de-	J D
		equation $\frac{\partial w}{\partial t} + \frac{\partial^3 w}{\partial x^3} - 6w \frac{\partial w}{\partial x} = 0$			
		Linear, 3 rd order	B.	Non-linear 3 rd order	
		Linear first order	D.	Non-linear first order	
568)			·(2c 0)	•	A
	soive	$\frac{\partial u}{\partial x} = 6\frac{\partial u}{\partial t} + u$ using separation method of variable if u			
	A.	$10e^{-x}e^{-\frac{t}{3}}$	В.	$10e^x e^{-\frac{t}{3}}$	
		100 6 9		100 6 9	
		r		x	
	\boldsymbol{C}				
	C.	$10e^{\frac{x}{3}}e^{-t}$ e solving the partial differential equation by separable m	D.	$10e^{-\frac{x}{3}}e^{t}$	

	A. Can be positive or negative integer or zero	В.	Can be positive or negative rational number or zero	
l	C. Must be positive integer C. Must be positive integer	<u>р.</u>	Must be negative integer	
570)	When solving a 1-dimensional heat equation using a va	riahle sen		C
370)	A. k is positive	R	k is 0	
	C. k is negative	D.	k can be anything	
571)	$f(x,y) = \sin(xy) + x^2 \ln(y)$. Find f_{xy} at $(0,\frac{\pi}{2})$	<u> </u>	it can be anything	D
		<u> </u>	lo	
	A. 33 C. 3	В.	0	
550	- F	<u>р.</u>	<u> </u>	
572)	$f(x,y) = x^2 + y^3$; $x = t^2 + t^3$; $y = t^3 + t^9$ find $\frac{d}{d}$	$\frac{f}{t}$ at t=1		D
	A. 0	В.	1	
	A. 0 C164	D.	164	
573)	D.E for $y = A\cos\alpha x + B\sin\alpha x$, where A and B are art	bitrary con		В
	A. $\frac{d^2y}{dx^2} + \alpha y = 0$ C. $\frac{d^2y}{dx^2} - \alpha^2 y = 0$	В.	$\frac{d^2y}{dx^2} - \alpha y = 0$ $\frac{d^2y}{dx^2} + \alpha^2 y = 0$	
	$\frac{dx^2}{dx^2} + \alpha y = 0$		$\frac{dx^2}{dx^2} - \alpha y = 0$	
	C. d^2y	D.	d^2y	
	$\frac{1}{dx^2} - \alpha^2 y = 0$		$\frac{1}{dx^2} + \alpha^2 y = 0$	
	The order of D.E is defined as			В
	A. The highest degree of the variable	В.	The order of the highest derivative	
ì	C. The power of variable in the solution	D.	None of these	
575)	A primitive of an ODE is			С
ì	A. Its general solution	В.	Its particular solution	
	C. Its complementary solution	D.	None of these	
576)	The solution of a D.E subject to a condition satisfied at of	ne particu	ılar point is called	C
	A. A boundary value problem	В.	A two-point boundary value problem	
	C. An initial value problem	D.	A two point initial value problem	
577)	A general solution of an nth order D.E then			A
	A. n can be zero	В.	n is any non-negative integer	
L	C. n is any integer	D.	n is any natural number	
578)	The D.E $\frac{dy}{dx} = \frac{ax+by+c}{a'x+b'y+c'}$ is			C
Ī	T	Ь	Non-Homogeneous	
ì	A. Homogeneous C. Non-Linear	D.	None of these	
570)	The order of D.E where general solution is $C_1e^x + C_2e^2$	2x + C = 3x		A
	the order of D.E. where general solution is $C_1e^+ + C_2e^-$ constant is	$+ c_3 e^{-c}$	$+ c_4 e^{-\alpha} + c_5$, where c_1, c_2, c_3, c_4, c_5 , are arbitrary	A
Ī	A. 5	R	И	
	C. 3	<u>р.</u>	7	
580)	The particular integral of D.E $(D^2 - a^2)y - cosax$	ρ.]/	С
300)	Λ	В.	X	-
	$\frac{A}{C} = \frac{-\frac{1}{2a}cosax}{x}$	Б.	$\frac{x}{2a}$ sinax	
	C. X	D.	None of these	
	$-\frac{1}{2a}sinax$			
581)	The equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial z}$ where x, y, z are variable is	s a partial l	D.E of order and degree	C
	$\frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} + \frac{\partial z}{\partial z} = \frac{\partial z}{\partial z} + \frac{\partial z}{\partial$		h a	
	A. 2,1 C. 1,2	В. D.	2,2	
500)	1 /	D.	None of these	
582)	If $f(x) = e^{2x}$, $f'''(x) =$			С
	A. $6e^{2x}$	B.	e^{2x}	
ļ			${6}$	
	G . 2:			
j	C. $8e^{2x}$	D.	none of these	
583)	d_{σ^x}			В
583)	$\frac{d}{dx}5^x =$			В

A.	<u>-</u>	В.	$5^x \ln 5$	
1	11 5			
C.	ln 5	D.	none of these	<u> </u>
C.	$\frac{\ln 5}{5^x}$	D.	none of these	
584) If	f $f'(c) = 0$, then f has relative maximum	value at x	=c, if	A
A.	f'(c) < 0	В.	f''(c) = 0	
C.	f''(c) > 0	D.	none of these	
	The function f is neither increasing nor decision is called	ecreasing at	a point, provided that $f'(x) = 0$ at that point, then	В
A.	. Critical point	В.	Maximum point	
C.	Stationary point	D.	none of these	
586) T	The function $f(x) = ax^2 + bx + c$ has minim	num value i	f	A
A.	. a > 0	В.	a = 0	
C.	a < 0	D.	none of these	
587) 1	$-x + x^2 - x^3 + x^4 + \dots + (-1)^n x^n + \dots$ is th	e expansion	n of	С
A.	. 1	B.	1	
	$\overline{1-x}$		$\sqrt{1-x}$	
C.	1	D.	none of these	
588) It	$\begin{cases} 1+x \\ f'(x) = 0, f''(c) \le 0 \text{ at a point P, then P} \end{cases}$	is called		D
A.		В.	Relative minimum	
C.		D.	none of these	
589) If	$f y = \sinh^{-1}(x^3), \frac{dy}{dx} =$	1		С
A.	x^2	В.	1	
	$\sqrt{1+x^3}$		$\sqrt{1+x^6}$	
C.		D.	none of these	
590) A	A function $f(x)$ is such that, $f'(x) > 0$ at .	x = c, then	f is said to be	A
A.	. Increasing	В.	Decreasing	
C.	Constant	D.	none of these	
⁵⁹¹⁾ A	A function $f(x)$ is such that, at a point $x = \frac{1}{x}$	=0, f(x)=	= 0 then f is said to be	С
A.	Increasing	В.	Decreasing	
C.	Constant	D.	none of these	
592) If	$f(x) = e^{\sqrt{x}-1}, f'(0) =$			В
11				

C. e	D. none of these	
	prome of these	С
$\frac{d}{dx}(\tan^{-1}x - \cot^{-1}x) =$		
A. 2	В. 2	
<u> </u>	B. $-\frac{2}{1+x^2}$	
$\begin{array}{c c} \sqrt{1+x^2} \\ C. & 2 \end{array}$	D. none of these	
C. $\frac{2}{1+x^2}$	none of these	
		A
594) If $f(\frac{1}{x}) = \tan x$, $f'(\frac{1}{\pi}) =$		
A 2	b 1	
A. $-\pi^2$ C. 1	B. 1 D. none of these	
C. $\left -\frac{1}{\pi^2}\right $	D. none of these	
595) _ 1 1		В
If $f(\frac{1}{x}) = \frac{1}{x}$ Then a critical point of $f(\frac{1}{x}) = \frac{1}{x}$	is	
A. -1 C. 1	B. 0 D. none of these	
$\int a^{\lambda x} dx =$	p. mone of these	В
Ju un -		
A. $a^{\lambda x}$	B. $a^{\lambda x}$	
$\frac{1}{\lambda}$	$\frac{1}{\lambda \ln a}$	
C. $a^{\lambda x}$	D. none of these	
A. $\frac{a^{\lambda x}}{\lambda}$ C. $\frac{a^{\lambda x}}{\ln a}$		
$\int \frac{f'(x)}{f(x)} dx =$		A
$\int \frac{1}{f(x)} dx =$		
A. $\ln f(x) $	β . $f'(r)$	
13 () 1	$\int \int dx$	
C. $\ln f'(x) $	D. none of these	
$\int \frac{1}{\sqrt{x+a} + \sqrt{x}} dx \text{ can be evaluated if}$		C
$\sqrt{x+a} + \sqrt{x}$		
A. $x > 0, a < 0$	B. $x < 0, a < 0$	
C. $x > 0, a > 0$	D. none of these	
$\int a^{x^2} x dx =$		В
J		
A. a^{x^2}	B. a^{x^2}	
ln a	$2 \ln a$	
C. $a^{x^2} \ln a$	D. none of these	
$\int e^{ax} [af(x) + f'(x)] dx =$		В
A. $e^{ax}f'(x)$	B. $e^{ax}f(x)$	

C. $ae^{ax}f'(x)$	D. none of these	
$\int e^x [\sin x + \cos x] dx =$		С
A. $-e^x \sin x$	B. $e^x \cos x$	
C. $e^x \sin x$	D. none of these	
$\int_{1}^{2} a^{x} dx =$		В
A. $(a^2-a)\ln a$	B. $\frac{(a^2 - a)}{\ln a}$	
C. $(a^2-a)\log a$	D. none of these	
$\int \frac{1}{x \ln x}$		A
A. $\ln(\ln x) + c$	B. $\ln x + c$	
C. $\ln x$	D. none of these	В
$\int \frac{x+1}{x+1} dx$		Б
A. $ln(x+1)$	B. $x + \ln(x+1)$	
C. $\ln(x+1)-x$	D. none of these	
$\int_{0}^{3} \frac{1}{x^{3} + 9} dx$		С
A. $\frac{\pi}{4}$	B. $\frac{\pi}{2}$	
C. $\frac{\pi}{12}$	D. none of these	
$\int e^x \left[\frac{1}{x} + \ln x \right] dx =$		A
A. $e^x \ln x$	B. $e^x \frac{1}{x}$	
C. $-e^x \frac{1}{x}$	D. none of these	
$\int e^{x} \left[\frac{1}{x} - \frac{1}{x^{2}} \right] dx =$		A
A. $e^x \frac{1}{x}$	B. $e^x \ln x$	
C. $e^x \frac{1}{x^2}$	D. none of these	
608) If $x < 0, y > 0$ then the point	P(-x, -y) lies in the quadrant	С
A. II	B. II	

	C.	IV	D.	none of these	
609)	The	e centroid of a triangle divides each median in t	the ra	tio of	В
	Α.	1:2	В.	2:1	1
	C.	1:1	D.	none of these	
610)	If x	x and y have opposite signs then the point $P(x)$			A
	A.	II&IV	В.	I&III	
	C.	II&IV	D.	none of these	
611)	The	e two intercepts form of the equation of a straig	tht lin	ie is	С
	A.	y = mx + c	В.	$y - y_1 = m(x - x_1)$	
	C.	$\frac{x}{a} + \frac{y}{b} = 1$	D.	none of these	
612)	The	e slope of the line perpendicular to $ax + by + c =$	= 0 is		A
	A.	<u>b</u>	B.	_ <u>a</u>	
		a		$-\frac{1}{b}$	
	C.	$\frac{a}{b}$	D.	none of these	
613)	The	e line $2x + y + 2 = 0$ and $6x + 3y - 8 = 0$ are		. L	В
013)		· · · · · · · · · · · · · · · · · · ·			
		Perpendicular	B.	Parallel	
		Non coplanar	D.	none of these	
614)	If th	hree lines pass through one common point then	the l	ines are called	C
	A.	Parallel	B.	Congruent	
	C.	Concurrent	D.	none of these	
615)	2x	y + y + k = 0 (k being a parameter) represent			В
	A.	Two line	В.	Family of lines	
	C.	Intersecting lines	D.	none of these	
616)	Equ	uation of vertical line through $(-5,3)$ is			A
	A.	x+5=0	В.	x-5=0	
	C.	x+3=0	D.	none of these	
617)	Equ	nation of line through (-8,5) and having slope	unde	fined is	С
	Α.	x+8=0	B.	x-5=0	
	C.	x-8=0	D.	none of these	
618)	Two	o lines l_1 and l_2 with the slope m_1 and m_2 , are	perpe	endicular if	A
	A.	$m_1 m_2 = -1$	В.	$m_1 m_2 = 1$	
	C.	$m_1 m_2 = 0$	D.	none of these	
619)	Tw	o lines represented by $ax^2 + 2hxy + by^2 = 0$ are	real a	and distinct if	С
	A.	$h^2 - ab < 0$	В.	h = 0	
	C.	$\frac{b^2 - ab > 0}{b^2 - ab > 0}$	D.	none of these	

(1) Tv	wo lines represented by $ax^2 + 2hxy$	$y + by^2 = 0$ are coin	cident if	l A
A.	$h^2 - ab = 0$	В.	$h^2 - ab < 0$	
C.	$h^2 - ab > 0$	D.	none of these	
l) Th	the lines $3y = 2x + 5$ and $3x + 2y -$	8 = 0 intersect at a	un angle of	I
A.	π	В.	π	
	$\frac{\pi}{3}$		$\overline{2}$	
C.	Intersect at an angle	D.	none of these	
2) Th	ne perpendicular distance of the lin	$e^{3x+4y+10} = 0$	from the origin is	
A.	0	В.	1	
C.	2	D.	none of these	
3) Th	ne lines represented by $ax^2 + 2hxy$	$+by^2 = 0$ are orthogonal	gonal if	
A.	a-b=0	В.	a+b=0	
C.	a+b>0	D.	none of these	
(1) Th	ne distance of the point (3,7) from	the y-axis is		
A.	3	В.	- 7	
C.	-3	D.	none of these	
5) Th	ne equation $9x^2 + 24xy + 16y^2 = 0$	represents a pair of	of lines which are	(
A.	Real and distinct	В.	imaginary	
C.	Real and coincident	D.	none of these	
5) If	a straight line is parallel to x-axis	then its slope is		1
A.	-1	В.	0	
C.	undefined	D.	none of these	
') Int	tercept form of equation of line is			
A.	$\frac{x}{x} + \frac{y}{x} = 1$	В.	$\frac{x}{x} - \frac{y}{x} = 0$	
	a b		a b	
C.	$\frac{x}{a} + \frac{y}{b} = 0$	D.	none of these	
3) Th	ne perpendicular distance of a line	12x + 5y = 7 from	1 (0,0) is	1
A.	1	В.	7	
	$\overline{13}$		$\overline{13}$	
C.	13	D.	none of these	
	$\overline{7}$			
	ne passes through the point of inte	ersection of two lin	es l_1 and l_2 is	
9) Li	ne pusses un sugn une point of inte			
9) Li		В.	$l_1 + kl_2 = 2$	
	$k_1 l_1 = k_2 l_2$ $l_1 + k l_2 = 0$	B. D.	$l_1 + kl_2 = 2$ none of these	

	A.	25	В.	2	
	C.	3	D.	none of these	
631)		e solution of $ax + by < c$ is	<u> </u>		В
	A.	Closed half plane	B.	Open half plane	
	C.	parabola	D.	none of these	
632)	The	e symbols used for inequality are			С
	A.	1	B.	2	
	C.	4	D.	none of these	
633)	ax	+by < c is not a linear inequality if			A
	A.	a = 0, b = 0	В.	$a \neq 0, b \neq 0$	
	C.	$a = 0, b \neq 0$	D.	none of these	
634)	<i>x</i> =	= 0 is the solution of the inequality	•		В
	A.	x < 0	В.	2x+3>0	
	C.	x + 4 < 0	D.	none of these	
635)	The	e angle inscribed in a semi-circle is			С
	A.	$\frac{\pi}{3}$	B.	π	
		3			
	C.	$\left \frac{\pi}{2} \right $	D.	none of these	
636)	The	e number of tangents that can be drawn from a	point	$P(x_1, y_1)$ to a circle are	В
	A.	One	В.	Two	
	C.	More than two	D.	none of these	
637)	Co	ngruent chords of a circle are equi-distant form	n the		A
	A.	Center	B.	Origin	
	C.	Tangent	D.	none of these	
638)	x =	$= a \cos t$, $y = a \sin t$ are the parametric equation	s of		С
	A.	parabola	B.	ellipse	
	C.	circle	D.	none of these	
639)	<i>x</i> =	= $a \sec t$, $y = b \tan t$ are the parametric equations	s of		В
	A.	parabola	В.	hyperbola	
	C.	ellipse	D.	none of these	
640)	The	e parabola $y^2 = -12x$ opens			С
	A.	upwards	В.	downwards	
	C.	leftward	D.	none of these	
641)	In t	the case of an ellipse it is always true that			A
	A.	$a^2 > b^2$	В.	$a^2 < b^2$	

If the associative law holds in a set, the se		h.c. 1	
A. Is a group	В.	May be a group	
C. Is not a group An example of a group under multiplication	D.	none of these	(
An example of a group under multiplication	on is the set	01	
A. Integers	B.	Whole numbers	
C. 4 th roots of unity	D.	none of these	
A group			A
A. Is closed set	В.	May not be closed	
C. May be an empty set	D.	none of these	
Which one is not true	· ·	•	Ι
A. $Z \subset Q$	В.	$Q \subset R$	
$C. R \subset C$	D.	none of these	
6) An example of a vector space is	D.	none of these	I
	<u> </u>	D(O)	
A. $Q(R)$	В.	R(Q)	
C. $Q'(Q)$	D.	none of these	
A rational number			
A. May not be a real number	В.	Is not a real number	
C. Is a real number	D.	none of these	
A real number	·		(
A. Is a rational number	В.	Is not an irrational number	
C. May be an irrational number	D.	none of these	
The set of real numbers is a subset of	· ·	•	(
A. Z	В.	Q	
C. <i>C</i>	D.	none of these	
0) [0,1]=	D.	none of these	I
		I.o. r	
A. [1,2]	В.	[0,∞[
C.]-∞,0]	D.	none of these	
$a_n = \frac{2}{\sqrt{n^2 + 3}}$ is the nth term of a sequence	ce. The seque	ence $(a_n)_{n=1}^{\infty}$	
A. Converges	В.	Diverges	
C. May or may not converge	D.	None of these	
$a_n = \frac{\sqrt{n+1}}{n}$ is the nth term of a sequence	e. The seque	$\operatorname{nce} (a_n)_{n=1}^{\infty}$	I
A. Diverges	В.	Converges	
C. May or may not converge	D.	None of these	

	$a_n =$	$= \frac{1 + (-1)^n}{n}$ is the nth term of a sequ	ience. The seque	nce $(a_n)_{n=1}^{\infty}$	A
	A.	converges	В.	diverges	
	C.	may not converge	D.	None of these	
554)	a_n	$= \frac{5^n}{(n+1)^2}$ is the nth term of a sequence	uence. The seque	ence $(a_n)_{n=1}^{\infty}$	В
,	A.	converges	В.	diverges	
	C.	may not diverge	D.	None of these	
555)	Th	the series $\sum_{1}^{\infty} \frac{5n+2}{3n-1}$			В
,	A.	converges	В.	diverges	
(C.	may not diverge	D.	None of these	
	A.	the series $\sum_{1}^{\infty} a_n$ converges if $\int_{1}^{\infty} f(x)dx$. Diverges	В.	Converges	
- -				Converges None of these	
- -	A. C.	Diverges	В.	_	A
557)	A. C.	Diverges May not converges	В.	_	A
557)	$\frac{A}{C}$.	Diverges May not converges a_n diverges if $\int_1^\infty f(x)dx$	В. D.	None of these	A
557)	$\frac{A}{C}$. \sum_{1}^{∞}	Diverges May not converges a_n diverges if $\int_{1}^{\infty} f(x)dx$ Diverges	B. D. B.	None of these Converges	A
557)	$\frac{A}{C}$. \sum_{1}^{∞}	Diverges May not converges a_n diverges if $\int_1^{\infty} f(x)dx$ Diverges May not diverge	B. D. B.	None of these Converges	
557)	$\frac{A.}{C.}$ $\frac{\sum_{1}^{\infty}}{A.}$ $\frac{C.}{\sum_{1}^{\infty}}$	Diverges May not converges a_n diverges if $\int_1^{\infty} f(x)dx$ Diverges May not diverge $\frac{1}{n^p}$ is convergent for	B. D.	None of these Converges None of these	
557)	$\frac{A.}{\sum_{1}^{\infty}}$ $\frac{A.}{A.}$ $\frac{C.}{\sum_{1}^{\infty}}$	Diverges May not converges a_n diverges if $\int_1^{\infty} f(x)dx$ Diverges May not diverge $a_n = \frac{1}{n^p}$ is convergent for $a_n = \frac{1}{n^p}$	В. D. В. D.	None of these Converges None of these $p > 1$	

	A.	$p \le 1$	В.	<i>p</i> ≥ 1	
	C.	p=1	D.	None of these	
660)	Find the sum of th $1 + \frac{\sqrt{2}}{3} + \left(\frac{\sqrt{2}}{3}\right)^2 + \left(\frac{\sqrt{2}}{3}\right)^3 + \cdots$				С
	A. C.	$\frac{3}{3+\sqrt{2}}$ $\frac{3}{3-\sqrt{2}}$ e series $\sum_{1}^{\infty} \frac{\ln n}{n}$	В. D.	$\frac{\sqrt{3}}{3 - \sqrt{2}}$ None of these	
	C.	$\frac{3}{3-\sqrt{2}}$			
661)	The	e series $\sum_{1}^{\infty} \frac{\ln n}{n}$	•		В
		Converges	B.	Diverges	
662)		May not converge	D.	None of these	
002)	The	e series $\sum_{1}^{\infty} \frac{\ln n}{1 + \ln n}$			A
		Diverges	В.	Converges	
663)	C.	May not converge	D.	None of these	
003)	AS	sparse matrix has most of its entries are			A
	A.	zero	B.	positive	
	C.	negative	D.	None of these	
664)	A	dense matrix has most of its entries are			A
	Α.	non-zero	В.	positive	
	C .	negative	D.	None of these	
665)	A sv	ystem of linear equation is said to be consistent if it			В
ŕ		no solution	В.	infinitely many solution	
		two solutions	D.	None of these	
666)	A system of linear equation is inconsistent if it has				A
	A.	no solution	В.	infinitely many solution	
		two solutions	D.	None of these	
667)	For what values of h and k is the system $2x_1 - x_2 = h$, $-6x_1 + x_2 = k$ consistent?				A
		$h = -3, \ k = 1$	В.	$h = -3, \ k = 2$	
	C.	h = 3, k = 1	D.	None of these	
668)	A lir	near system $x_1 + x_2 = 4$, $3x_1 + 3x_2 = 6$ has			A
		no solution	В.	infinitely many solution	
	C.	two solutions	D.	None of these	
669)		2 2 4 6 1	initaly,	many solutions if	A
	<i>[</i> 1	inica system = nas iiii	ппшту	many solutions if	

	A. $2a - b = 0$	В.	2a + b = 0	
	C. $a = b$	D.	None of these	
670)	One of the solutions of the $10x_1 - 3x_2 - 2x_3 = 0$ is			
	A. $\left(\frac{1}{3},1,1\right)$	В.	$\left(\frac{1}{2},1,3\right)$	
	$C.$ $\left(\frac{1}{2},1,1\right)$	D.	None of these	
671)	Which of the following is a diagonal matrix?			
	A. [1 0 0]	В.	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	
	0 2 6		0 2 0	
			$\begin{bmatrix} 6 & 8 & 0 \end{bmatrix}$	
	C. [0 0 0]	D.	None of these	
672)	If $A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ then which of the following is true for A ?			D
	$A. A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	В.	$A = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}$	
	$C. A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	D.	None of these	
673)	Let $A=\left[a_{ij}\right]_{m \times n}$ and $B=\left[b_{ij}\right]_{n \times p}$, then $(i,j)th$ element of AB is			A
	A. $\sum_{k=1}^{n} a_{ik} b_{kj}$	В.	$\sum_{k=1}^{n} a_{ki}b_{kj}$	
	C. $\sum_{k=1}^{n} a_{ik} b_{jk}$	D.	None of these	
674)	If order of A is 8×7 , then the order of AA^t is:			
	A. 7×7	В.	7×8	-
	C. 8×8	D.	None of these	
675)	The rank of the matrix $A = \begin{bmatrix} 4 & 1 & 8 \\ 0 & 7 & 7 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ is	1		С
	A. 1	В.	2	
	C. 3	D.	None of these	

676)		В
	The rank of the matrix $A = \begin{bmatrix} 1 & 3 \\ 0 & -2 \\ 5 & -1 \\ -2 & 3 \end{bmatrix}$ is	
	$\begin{bmatrix} 3 & -1 \\ -2 & 3 \end{bmatrix}$	
	A. 1 B. 2 C. 3 D. None of these	
677)		В
0,	A. \[\[1 \] 1 \] \[-1 \] \[B. \[\[\] 0 \] 1 \] \[-1 \]	B
	$ \begin{bmatrix} 4 & -3 & 4 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix} $	
	$\begin{bmatrix} 4 & -3 & 4 \\ 3 & 1 & 1 \end{bmatrix}$ C. $\begin{bmatrix} 4 & 1 & -1 \\ 0 & -1 & 0 \\ 3 & 0 & 4 \end{bmatrix}$ D. None of these	
	C. $\begin{bmatrix} 4 & 1 & -1 \end{bmatrix}$ D. None of these	
678)		Α
076)	The matrix $A = \begin{bmatrix} 1 & -2 & -6 \\ -3 & 2 & 9 \\ 2 & 0 & -3 \end{bmatrix}$ is periotic matrix having period	A
	The matrix $A = \begin{bmatrix} -3 & 2 & 9 \end{bmatrix}$ is periotic matrix having period	
	A. 1 B. 2	
679)	C. 3 D. None of these	Α.
0/9)	Let $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$, $y = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix}$ be two 1×3 matrices. Its product is	A
	$x \times y = [x_2 y_3 - y_2 x_3 x_3 y_1 - y_3 x_1 x_1 y_2 - y_1 x_2], \text{ then } x \times x =$	
	A. 0 B. 2	
680)	C. 3 D. None of these	D
080)	The echelon form of matrix $A = \begin{vmatrix} 0 & 3 & 4 \\ -4 & 1 & -6 \end{vmatrix}$ is	В
	A. \[\begin{array}{c ccccccccccccccccccccccccccccccccccc	
	$\begin{vmatrix} A \cdot & 1 & 0 & \frac{7}{9} \end{vmatrix}$	
	$\begin{vmatrix} 0 & 1 & \frac{2}{9} \end{vmatrix}$	
	C. [7] D. None of these	
	C. $\begin{bmatrix} 1 & 0 & \frac{7}{9} \end{bmatrix}$ D. None of these	
	$ \left \begin{array}{ccc} 1 & 1 & -\frac{6}{9} \end{array} \right $	

681)	The invers of the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 4 & 1 \\ 1 & 3 & 0 \end{bmatrix}$ is				A
	A.	$A^{-1} = \begin{vmatrix} -1 & 3 & -4 \\ \frac{1}{3} & -1 & \frac{5}{3} \\ \frac{2}{3} & -1 & \frac{4}{3} \end{vmatrix}$	3.	$A^{-1} = \begin{bmatrix} -1 & 3 & -4 \\ 3 & -1 & \frac{5}{3} \\ \frac{2}{3} & -4 & 9 \end{bmatrix}$	
	C.	$A^{-1} = \begin{bmatrix} -1 & 3 & -4 \\ 3 & -1 & 2 \\ 2 & -4 & 1 \end{bmatrix}$	Э.	None of these	
682)	A.	$A = \begin{bmatrix} 0 & 2 & 6 \\ 0 & 8 & 0 \end{bmatrix}$	3. D.	$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 6 & 8 & 0 \end{bmatrix}$ None of these	D
683)	If a	$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ a $m \times n$ matrix B is obtain from a $m \times n$ matrix A by B is said to be to A .		nite number of elementary row and column operations,	В
	A. C.	1	3.	Equivalent None of these	
				С	
	A.		3.	Canonical	
C. Both A and B O. None of these A system of m linear equations $Ax = B$ in n unknowns has a unique solution if and only if $rank(A) = rank(B) =$				A	
	A.	m	3.	n	
	C.	0	Э.	None of these	
If A and B be $m \times n$ matrices over a field F and $a, b \in F$. Then				A	
	Α.	()	3.	$a(A+B) \neq aA+aB$	
	C.	$a(bA) \neq (ab)A$	Э.	None of these	
$^{687)}$ If the matrices A and B are conformable for addition and multiplication, then				nd multiplication, then	С
	A.	$\left(A+B\right)^2 = A^2 + 2AB + B^2$	3.	$A^2 - B^2 = (A - B)(A + B)$	

	$C. \left((A+B)^2 \neq A^2 + 2AB + B^2 \right)$	D.	None of these	
688)	Write the matrix A that is idempotent	l .		A
	A. $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$	В.	$A = \begin{bmatrix} 2 & 2 & 4 \\ 1 & 3 & 4 \\ 1 & 2 & -3 \end{bmatrix}$	
	C. $A = \begin{bmatrix} 2 & 2 & 4 \\ 1 & 0 & 0 \\ 0 & 2 & 3 \end{bmatrix}$	D.	None of these	
689)	The matrix $A = \begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$ is nilpotent. V			В
	A. 1 C. 3	В. D.	None of these	
690)	If A is matrix over R and $AA^T = 0$ then	ρ.	Tione of these	A
	A. $A = 0$	В.	$A \neq 0$	
	C. $A = I$	D.	None of these	
691)	If A is matrix over $\mathbb C$ and $A\Big(\overline A\Big)^{\! T}=0$ then			В
	A. $\overline{A} \neq 0 \neq A$	В.	$\overline{A} = 0 = A$	
	C. $\overline{A} \neq 0, A = 0$	D.	None of these	
692)	If $\operatorname{rank}(A) = \operatorname{rank}(A_b)$, then the system Ax	z = b		A
	A. Is consistent	B.	has unique solution	
	C. has infinite solutions	D.	None of these	
693)	Let $Ax = b$ be a system of 3 linear equations maximum value of rank (A_b) ?	s in 7 vari	ables, then which of the following can be the	A
	A. 3	B.	4	
(0.4)	C. 6	<u>D.</u>	None of these	
694)	Let A be a matrix of order 4×5 and rank (A			C
	A. Unique solution	В.	no solution	
50.5	C. infinitely many solutions	D.	None of these	
695)	The system $\begin{bmatrix} -3 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has			С
	A. Unique solution	В.	no solution	
	C. infinitely many solutions	D.	None of these	

696)	If the augmented matrix of a system is $\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$	2 ,	then the system has	В
	A. Unique solution	B.	no solution	
	C. infinitely many solutions	D.	None of these	
697)	A system $Ax = b$ of n equations and n unknowns	has a	unique solution if A is	В
	A. Singular	B.	non-singular	
(00)	C. non invertible	D.	None of these	
698)	Let A and B are square matrices such that $AB = AB$	I, the	n zero is an eigen value of	В
	A. A but not of B	B.	neither A nor B	
	C. both A and B	D.	None of these	
699)	The eigen values of a skew-symmetric matrix are			C
	A. negative	B.	real	
700)	C. purely imaginary or zero	D.	None of these	
700)	If $\lim_{n\to\infty} a_n = l$, $a_n \to l$ as			A
	A. $n \to \infty$	B.	$n \rightarrow 0$	
	C. $n \rightarrow 1$	D.	None of these	
701)	The sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ is	T		В
	A. divergent	B.	convergent	
702)	C. oscillating	D.	None of these	
702)	$\log_3(27) =$	1		D
	A. 9	В.	24	
703)	C. 6	D.	None of these	0
703)	A bounded sequence of real numbers			C
	A. converges	B.	diverges	
	C. may converge	D.	None of these	
704)	A Cauchy sequence of real numbers is			D
	A. not bounded	В.	oscillating	
	C. divergent	D.	None of these	
705)	Which of the following is a linear equation?	•		В
	A. $xy = e^{\pi}$	B.	$x + y = e^{\pi}$	
	C. $y = \sqrt{3x}$	D.	None of these	
706)	Let $A = \begin{bmatrix} 3 & 2 & 1 & -1 \\ 4 & 5 & 1 & 2 \\ -2 & 3 & 0 & 1 \\ 2 & 1 & 3 & 5 \end{bmatrix}$, then $ A =$			С

	A.	141	B.	139	
	C.	149	D.	None of these	
707)	Le	t A and B be matrices of order 6 such that			C
		$\det(AB^2) = 72$, $\det(A^2B^2) = 144$. Then	det (A	1)=	
		$\det(ID) = 72$, $\det(ID) = 144$. Here	det (11	.)	
	٨	0	р	1	-
	A. C.	2	B. D.	None of these	\dashv
708)	1	$a a^2$	Ρ,	Trone of these	В
	1	$\begin{vmatrix} a & a^2 \\ b & b^2 \\ c & c^2 \end{vmatrix} = ?$			
	1	$\begin{bmatrix} c & c \end{bmatrix}^{-1}$			
	1				
	A.	(a-b)(a-c)(b-c)	B.	(a-b)(b-c)(c-a)	
	C.	(a-b)(c-b)(c-a)	D.	None of these	
709)		[1 2 2]			A
	τc	$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$, then adj $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$			
	11 /	$A = \begin{bmatrix} 2 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}$, then adj $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \end{bmatrix}$			
		[3 1 2]			
		「 5		T[5 -1 0]	
	Δ		R	1 -7 5	
	. 1.	$\begin{bmatrix} 5 & -1 & -7 \\ -1 & -7 & 5 \\ -7 & 5 & -1 \end{bmatrix}$	D .	$ \begin{bmatrix} 5 & -1 & 0 \\ 1 & -7 & 5 \\ 7 & 6 & -8 \end{bmatrix} $	
				[, 0 0]	-
	_	$ \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} $			
	C.		D.	None of these	
710)	- 1	-b $b-c$ $c-a$			A
	b	$\begin{vmatrix} -c & c-a & a-b \\ -a & a-b & b-c \end{vmatrix} =$			
	c	-a a-b b-c			
	Λ.	0	b	1	
	A. C	2	В. D.	None of these	
711)	1		ρ.	profite of these	D
	$\frac{1}{2!}$	1 0			
	1	1 1			
	$\frac{1}{3!}$	$\frac{1}{2!}$ 1 =			
	1				
	$\frac{1}{4!}$	$\frac{1}{3!} \frac{1}{2!}$			
I	A.	0!	B.	1!	
	C.	2!	D.	None of these	

712)	1 2+x 3			A
	If $\begin{vmatrix} 2 & 1 & 3+x \\ 3 & 2+x & 1 \end{vmatrix} = 0$, then the values of x			
		В.	x = 1, x = 6	
	C. $x = 2, x = 3$	D.	None of these	
713)	The eigenvalues of the matrix $\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$ are			В
	A. 1, 2, 3 C. 1, 4, 5	B. [1, 3, 4 None of these	
714)	Let A be a square matrix of order 4×4 , then $ A = $	μ.μ	None of these	С
	A. $ - A $	В.	- A'	
	$C. A^t $		None of these	
715)	Row expansion of $ A $ column expansion	of A		A
	A. =	B. 7	!	
	C. There is no comparison		None of these	
716)	Let $A = [a_{ij}]$ be a $n \times n$ triangular matrix, then $ A =$	=		A
	A. $a_{11}a_{22}\cdots a_{nn}$	В. а	$a_{11} + a_{22} + \dots + a_{mn}$	
	C. $a_{11} - a_{22} - \cdots - a_{nn}$		None of these	
717)	For an invertible matrix A , $ A^{-1} =$			С
	A. A	В.	- A	
	C. $ A ^{-1}$	D. N	None of these	
718)	Let A be a square matrix of order n. A matrix ob	taine	ed from A by deleting its ith row and jth column is	A
	again a matrix of order $n-1$ which is called			
	A. ijth minor of A	B. <i>i</i>	ijth cofactor of A	
	C. Determinant of <i>A</i>	D. N	None of these	
719)	Let M_{ij} be the <i>ijth</i> minor of a square matrix A of ord	er <i>n</i> .	Then <i>ijth</i> cofactor of A is	C
	A. $ M_{ij} $	В. _Е	$\pm M_{ij} $	
	C. $\left (-1)^{i+j} \left M_{ij} \right \right $		None of these	
720)	If A is any matrix of order $n \times n$ and k is a nonz	ero r	real number, then	С
	A. $ kA = k A $	В.	kA = k A	
	C. $ kA = k^n A $		None of these	
721)	$\begin{vmatrix} a_{11} & a_{12} \\ + a_{11} & b_{12} \end{vmatrix} =$	1 1		В
	$\begin{vmatrix} a_{21} & a_{22} \end{vmatrix}^{+} \begin{vmatrix} a_{21} & b_{22} \end{vmatrix}^{=}$			

	A. $\begin{vmatrix} a_{11} & a_{12} \\ & & \end{vmatrix}$	$\mathbf{B}. \begin{vmatrix} a_{11} & a_{12} + b_{12} \\ \vdots & \vdots & \vdots \end{vmatrix}$	
	$ a_{21} b_{22} $	$\begin{vmatrix} \mathbf{p} \cdot \ a_{21} & a_{22} + b_{22} \end{vmatrix}$	
	C. 0	D. None of these	
722)	$\begin{bmatrix} 3 & 2 & 1 & -1 \end{bmatrix}$		В
	4 5 1 2		
	Let $A = \begin{bmatrix} 1 & 3 & 1 & 2 \\ -2 & 3 & 0 & 1 \end{bmatrix}$, then 33th cofactor of A	18	
	2 1 3 5		
		B. 34	
	C. 56	D. None of these	
723)	1 0 5 6		В
	0 5 0 8		
	$\begin{vmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 8 \end{vmatrix} =$		
	0 0 0 3		
	A . 3 C. 28	B15	-
724)		D. None of these	В
/21)	$\begin{bmatrix} 0 & a & -b \end{bmatrix}$		B
	$\begin{vmatrix} -a & 0 & c \end{vmatrix} =$		
	$\begin{vmatrix} b & -c & 0 \end{vmatrix}$		
	A. 1	B. 0	
725)	C. -1	D. None of these	
725)		$\begin{bmatrix} 0 & x+b & x^2+c \end{bmatrix}$	A
	If a,b,c are different numbers. For what value of	x, the matrix $\begin{vmatrix} x-b & 0 & x^2-c \end{vmatrix}$ is singular?	
		$\begin{vmatrix} x^3 - c & x + a & 0 \end{vmatrix}$	
		B. <i>a</i>	
726)	C. b	D. None of these	
726)	$\begin{vmatrix} k & 4k & 4 \end{vmatrix}$		В
	Let $A = \begin{vmatrix} 0 & 4 & 4k \end{vmatrix}$. If $\begin{vmatrix} A^2 \end{vmatrix} = 16$, then value of k	is	
	Let $A = \begin{bmatrix} k & 4k & 4 \\ 0 & 4 & 4k \\ 0 & 0 & 4 \end{bmatrix}$. If $ A^2 = 16$, then value of k		
		B. $\frac{1}{4}$	
	C. 16	D. None of these	
727)	The discrete matrix on a non-empty set X is define	ed as	A
	A. $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$ $C \qquad d(x,y) = \begin{cases} 0 & \text{if } x = y \\ -1 & \text{if } x \neq y \end{cases}$	B. $d(x,y) = \begin{cases} 0 & \text{if } x \neq y \\ 1 & \text{if } x = y \end{cases}$	
	$\begin{bmatrix} a(x,y) - \\ 1 \end{bmatrix}$ if $x \neq y$		
	C $\int 0 \text{ if } x = v$	D. None of these	=
	$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \end{cases}$		
	$(I \cap A \vdash y)$		

A. Cauchy inequality C. Minkowski's inequality D. None of these 7299 Which of the following is a system of nonhomogeneous linear equations? A. $\begin{vmatrix} x_1 + 2x_2 = 1 \\ 2x_1 + x_2 = 2 \end{vmatrix}$ B. $\begin{vmatrix} x_1 - 6x_2 = 0 \\ 6x_1 + x_2 = 20 \end{vmatrix}$ C. $\begin{vmatrix} x_1 + 2x_2 = 0 \\ 2x_1 + x_2 = 0 \end{vmatrix}$ D. None of these 7300 If $x_1 - x_2 + 2x_3 = 0$, $4x_1 + x_2 + 2x_3 = 1$, $x_1 + x_2 + x_3 = -1$, then A. $\begin{vmatrix} x_1 = 1, x_2 = -1, x_3 = -1 \\ x_1 = 1, x_2 = 1, x_3 = 1 \end{vmatrix}$ D. None of these 7311 The system $Ax = 0$ of m equations and n unknowns has nontrivial solution if and only if rank A . $A = 0$ then this system of linear equations A. $A = 0$, $A $	728)	$\left \sum_{k=1}^{n} x_k y_k \le \left(\sum_{k=1}^{n} x_k ^2 \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} y_k ^2 \right)^{\frac{1}{2}}, \text{ it is called} \right $		В
Which of the following is a system of nonhomogeneous linear equations? A.			B. Cauchy-Schwarz inequality	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C. Minkowski's inequality	D. None of these	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	729)	Which of the following is a system of nonhomoge	neous linear equations?	С
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A. $\begin{vmatrix} x_1 + 2x_2 = 1 \\ 2x_1 + x_2 = 2 \end{vmatrix}$	B. $\begin{vmatrix} x_1 - 6x_2 = 0 \\ 6x_1 + x_2 = 20 \end{vmatrix}$	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C.		
C. $x_1 = 1$, $x_2 = 1$, $x_3 = 1$ D. None of these The system $Ax = 0$ of m equations and n unknowns has nontrivial solution if and only if rank A .			-1, then	A
The system $Ax = 0$ of m equations and n unknowns has nontrivial solution if and only if rank A and A and A and A both A and A both A and A both A and A and A both A both A and A both				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C. $x_1 = 1, x_2 = 1, x_3 = 1$	D. None of these	
A. $=$ B. $<$ D. None of these 734) If $c \neq 2a - 3b$ then this system of linear equations $2x_1 - x_2 + 3x_3 = a, 3x_1 + x_2 - 5x_3 = b,$ $-5x_1 - 5x_2 + 21x_3 = c$ is called A. is consistent C. A and B both D. None of these 735) A. trivial solutions C. no solution D. None of these 736) For any matrix A the collection $\{x: Ax = 0\}$ is called of A A. rank C. both A and B D. None of these 737) Which of the following is a linear equation in the variables x, y, z ? A. $x - 2y = 0$ C. $\sin x + \cos y + \tan z = 0$ D. None of these 738) If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines C. same lines D. None of these 739) In Gauss-Jordan elimination method, we reduce the augmented matrix into			unknowns has nontrivial solution if and only if	
C. > D. None of these 734) If $c \neq 2a - 3b$ then this system of linear equations $2x_1 - x_2 + 3x_3 = a, 3x_1 + x_2 - 5x_3 = b,$ $-5x_1 - 5x_2 + 21x_3 = c \text{ is called}$ A. is consistent B. is inconsistent C. A and B both D. None of these 735) This matrix $\begin{bmatrix} 1 & 2 & 4 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 0 \end{bmatrix}$ A. trivial solutions C. no solution D. None of these 736) For any matrix A the collection $\{x : Ax = 0\}$ is called of A A. rank B. solution space C. both A and B D. None of these 737) Which of the following is a linear equation in the variables x, y, z ? A. $x - 2y = 0$ B. $x + \cos y = z$ C. $\sin x + \cos y + \tan z = 0$ D. None of these 738) If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines C. same lines D. None of these 739) In Gauss-Jordan elimination method, we reduce the augmented matrix into		$\operatorname{rank}(A)$ rank (A_b) .		В
Table Tab		A. =	B. <	
$-5x_1 - 5x_2 + 21x_3 = c \text{ is called}$ A. is consistent C. A and B both D. None of these $\begin{bmatrix} 1 & 2 & 4 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 0 \end{bmatrix}$ A. trivial solutions B. nontrivial C. no solution D. None of these $\begin{bmatrix} 736 & \text{For any matrix } A \text{ the collection } \{x: Ax = 0\} \text{ is called } & \text{ of } A \\ A. rank B. solution space C. both A and B D. None of these \begin{bmatrix} 737 & \text{Which of the following is a linear equation in the variables } x, y, z? \\ A. x - 2y = 0 B. x + \cos y = z \\ C. \sin x + \cos y + \tan z = 0 D. None of these \begin{bmatrix} 738 & \text{If a system of 2 equations and 2 unknown has no solution, then the graph looks like} \\ A. intersecting lines C. same lines D. None of these \begin{bmatrix} 739 & \text{None of these} \\ 730 & None of thes$		C. >		
C. A and B both D. None of these This matrix $\begin{bmatrix} 1 & 2 & 4 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 0 \end{bmatrix}$ has A. trivial solutions B. nontrivial C. no solution D. None of these Table For any matrix A the collection $\{x : Ax = 0\}$ is called of A A. rank B. solution space C. both A and B D. None of these Table Which of the following is a linear equation in the variables x, y, z ? A. $x - 2y = 0$ B. $x + \cos y = z$ C. $\sin x + \cos y + \tan z = 0$ D. None of these Table If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines B. non intersecting lines C. same lines D. None of these	734)		$2x_1 - x_2 + 3x_3 = a, 3x_1 + x_2 - 5x_3 = b,$	В
C. A and B both D. None of these This matrix $\begin{bmatrix} 1 & 2 & 4 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 0 \end{bmatrix}$ has A. trivial solutions B. nontrivial C. no solution D. None of these Table For any matrix A the collection $\{x : Ax = 0\}$ is called of A A. rank B. solution space C. both A and B D. None of these Table Which of the following is a linear equation in the variables x, y, z ? A. $x - 2y = 0$ B. $x + \cos y = z$ C. $\sin x + \cos y + \tan z = 0$ D. None of these Table If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines B. non intersecting lines C. same lines D. None of these			B. is inconsistent	1
This matrix $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 0 \end{bmatrix}$ has A. trivial solutions B. nontrivial C. no solution D. None of these 736) For any matrix A the collection $\{x : Ax = 0\}$ is called of A A. rank B. solution space C. both A and B D. None of these 737) Which of the following is a linear equation in the variables x, y, z ? A. $x - 2y = 0$ B. $x + \cos y = z$ C. $\sin x + \cos y + \tan z = 0$ D. None of these 738) If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines C. same lines D. None of these			D. None of these	
C. no solution D. None of these 736) For any matrix A the collection $\{x : Ax = 0\}$ is called of A A. rank B. solution space C. both A and B D. None of these 737) Which of the following is a linear equation in the variables x, y, z ? A. $x - 2y = 0$ B. $x + \cos y = z$ C. $\sin x + \cos y + \tan z = 0$ D. None of these 738) If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines C. same lines D. None of these 739) In Gauss-Jordan elimination method, we reduce the augmented matrix into	· ·	This matrix $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 0 \end{bmatrix}$ has		В
For any matrix A the collection $\{x : Ax = 0\}$ is called of A A. rank B. solution space C. both A and B D. None of these 737) Which of the following is a linear equation in the variables x, y, z ? A. $x - 2y = 0$ B. $x + \cos y = z$ C. $\sin x + \cos y + \tan z = 0$ D. None of these 738) If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines B. non intersecting lines C. same lines D. None of these				
A. rank B. solution space C. both A and B D. None of these 737) Which of the following is a linear equation in the variables x , y , z ? A. $x-2y=0$ B. $x+\cos y=z$ C. $\sin x + \cos y + \tan z = 0$ D. None of these 738) If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines B. non intersecting lines C. same lines D. None of these 739) In Gauss-Jordan elimination method, we reduce the augmented matrix into	736)			D
C. both A and B 737) Which of the following is a linear equation in the variables x, y, z? A. $x - 2y = 0$ B. $x + \cos y = z$ C. $\sin x + \cos y + \tan z = 0$ D. None of these 738) If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines B. non intersecting lines C. same lines D. None of these 739) In Gauss-Jordan elimination method, we reduce the augmented matrix into	(30)	For any matrix A the collection $\{x : Ax = 0\}$ is called		D
 Which of the following is a linear equation in the variables x, y, z? A. x-2y=0 B. x+cos y = z C. sin x+cos y + tan z = 0 D. None of these If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines C. same lines D. None of these Table 1. Table 2. Table 3. Table 3. Table 4. Table 4. Table 4. Table 5. Table 6. Table 6. Table 6. Table 7. Table 7. Table 7. Table 8. Table 9. Table 9.<!--</td--><td></td><td></td><td></td><td></td>				
A. $x-2y=0$ B. $x+\cos y=z$ C. $\sin x + \cos y + \tan z = 0$ D. None of these 738) If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines B. non intersecting lines C. same lines D. None of these 739) In Gauss-Jordan elimination method, we reduce the augmented matrix into	727	L		_
C. $\sin x + \cos y + \tan z = 0$ D. None of these 738) If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines B. non intersecting lines C. same lines D. None of these 739) In Gauss-Jordan elimination method, we reduce the augmented matrix into	(31)			A
738) If a system of 2 equations and 2 unknown has no solution, then the graph looks like A. intersecting lines B. non intersecting lines C. same lines D. None of these 739) In Gauss-Jordan elimination method, we reduce the augmented matrix into				
A. intersecting lines C. same lines D. None of these 739) In Gauss-Jordan elimination method, we reduce the augmented matrix into	729)	<u> </u>		D
C. same lines D. None of these 739) In Gauss-Jordan elimination method, we reduce the augmented matrix into	138)			В
739) In Gauss-Jordan elimination method, we reduce the augmented matrix into				-
	739)		l l	В
A. Ecnelon form B. Reduced ecnelon form		A. Echelon form	B. Reduced echelon form	1

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C. both A and B	D. None of these	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	740)	Every homogenous system of linear equations		A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{ c c c c c }\hline C. & rank (A) < 4 & D. & None of these \\\hline 742 & A. & consistent & B. & inconsistent & B$	741)			C
Table Tab		A. $\operatorname{rank}(A) = 4$	β . rank $(A) \neq 4$	
A. consistent B. inconsistent C. both A and B D. None of these 743) The equations of the type $a_1x_1 + a_1x_2 = b_1, a_2x_1 + a_2x_2 = b_2$, with $b = 0$ are called a system of A A. homogeneous linear equations B. non-homogeneous linear equations A C. non-linear equations D. None of these 7440) The solution of system of equations $x_1 + 5x_2 + 2x_3 = 9, x_1 + x_2 + 7x_3 = 6, -3x_2 + 4x_3 = -2$ is A A. $x_1 = -3, x_2 = 2, x_3 = 1$		C. $\operatorname{rank}(A) < 4$	D. None of these	
$ \begin{array}{ c c c c c } \hline C. & both A and B \\ \hline \begin{array}{c} \hline C. & both A and B \\ \hline \begin{array}{c} \hline A_{13} \\ \hline A_{14} \\ \hline A_{15} \\ \hline A_{25} \\ \hline A_{25} \\ \hline \begin{array}{c} \hline A_{25} \\ \hline A_{25} \\ \hline \\ \hline \begin{array}{c} \hline A_{25} \\ \hline A_{25} \\ \hline \\ \hline \begin{array}{c} \hline A_{25} \\ \hline \\ $	742)	If $Ax = b$ does not have any solution, then the syste	m is called	В
The equations of the type $a_{11}x_1 + a_{12}x_2 = b_1, a_{21}x_1 + a_{22}x_2 = b_2$, with $b = 0$ are called a system of A. homogeneous linear equations C. inon-linear equations D. None of these The solution of system of equations $x_1 + 5x_2 + 2x_3 = 9, x_1 + x_2 + 7x_3 = 6, -3x_2 + 4x_3 = -2$ is A. $x_1 = -3, x_2 = 2, x_3 = 1$ C. $x_1 = 1, x_2 = 1, x_3 = 0$ The solution of system of equations $2x_1 - x_2 + 3x_3 = 3, 3x_1 + x_2 - 5x_3 = 0, 4x_2 - x_3 + x_3 = 3$ is A. $x_1 = 1, x_2 = 2, x_3 = 1$ C. $x_1 = 1, x_2 = 1, x_3 = 0$ The solution of this matrix $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 4 & 1 & 8 \\ 0 & 0 & 2 & 0 \end{bmatrix}$ The solution of this matrix $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 4 & 1 & 8 \\ 0 & 0 & 2 & 0 \end{bmatrix}$ A. $x_1 = 3, x_2 = 2, x_3 = 0$ C. $x_1 = 1, x_2 = 1, x_3 = 0$ D. None of these A. $x_1 = 3, x_2 = 2, x_3 = 0$ A. $x_2 = 3, x_3 = 0$ D. None of these A. $x_3 = 3, x_3 = 2, x_3 = 0$ A. $x_4 = 3, x_2 = 2, x_3 = 0$ D. None of these A. $x_4 = 3, x_2 = 2, x_3 = 0$ D. None of these The dimension of the subspace of R^2 C. inot defined D. None of these The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ is B. $\begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 3 \end{pmatrix}$ A. invertible C. inilpotent D. None of these C. inilpotent D. None of these				
A. homogeneous linear equations C. non-linear equations D. None of these The solution of system of equations $x_1 + 5x_2 + 2x_3 = 9$, $x_1 + x_2 + 7x_3 = 6$, $-3x_2 + 4x_3 = -2$ is A. $x_1 = -3$, $x_2 = 2$, $x_3 = 1$ C. $x_1 = 1$, $x_2 = 1$, $x_3 = 0$ The solution of system of equations $2x_1 - x_2 + 3x_3 = 3$, $3x_1 + x_2 - 5x_3 = 0$, $4x_2 - x_3 + x_3 = 3$ is A. $x_1 = 1$, $x_2 = 2$, $x_3 = 1$ C. $x_1 = 1$, $x_2 = 1$, $x_3 = 0$ The solution of this matrix $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 4 & 1 & 8 \\ 0 & 0 & 2 & 0 \end{bmatrix}$ B. $x_1 = -3$, $x_2 = 1$, $x_3 = 0$ A. $x_1 = 3$, $x_2 = 2$, $x_3 = 0$ C. $x_1 = 1$, $x_2 = 1$, $x_3 = 0$ D. None of these A. $x_1 = 3$, $x_2 = 2$, $x_3 = 0$ D. None of these A. $x_1 = 3$, $x_2 = 1$, $x_3 = 0$ D. None of these A. $x_1 = 3$, $x_2 = 1$, $x_3 = 0$ D. None of these A. subspace of R^2 C. not defined D. None of these The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ is A. $\begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. $\begin{pmatrix} 1 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ A. invertible C. nilpotent D. None of these				
$ \begin{array}{ c c c c c }\hline C. & \text{non-linear equations} & D. & \text{None of these} \\ \hline C. & \text{non-linear equations} & D. & \text{None of these} \\ \hline A. & x_1 = -3, x_2 = 2, x_3 = 1 & B. & x_1 = -3, x_2 = 1, x_3 = 0 \\ \hline C. & x_1 = 1, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = -3, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 1, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 1, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline C. & x_1 = 1, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 1, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 3, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 3, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 3, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 3, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0, x_2 = 1, x_3 = 0 & D. & \text{None of these} \\ \hline A. & x_1 = 0,$	743)	The equations of the type $a_{11}x_1 + a_{12}x_2 = b_1, a_{21}x_1$	$a_1 + a_{22}x_2 = b_2$, with $b = 0$ are called a system of	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A. homogeneous linear equations	B. non-homogeneous linear equations	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C. non-linear equations	D. None of these	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	744)	The solution of system of equations $x_1 + 5x_2 + 2x_3$	$x_3 = 9, x_1 + x_2 + 7x_3 = 6, -3x_2 + 4x_3 = -2$ is	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$x_1 = -3, x_2 = 2, x_3 = 1$	$\mathbf{R} \mid x_1 = -3, x_2 = 1, x_3 = 0$	
745) The solution of system of equations $2x_1 - x_2 + 3x_3 = 3, 3x_1 + x_2 - 5x_3 = 0, 4x_2 - x_3 + x_3 = 3$ is A. $ x_1 = 1, x_2 = 2, x_3 = 1 $ B. $ x_1 = -3, x_2 = 1, x_3 = 0 $ 746) The solution of this matrix $\begin{vmatrix} 2 & -1 & 3 & 4 \\ 0 & 4 & 1 & 8 \\ 0 & 0 & 2 & 0 \end{vmatrix}$ is A. $ x_1 = 3, x_2 = 2, x_3 = 0 $ C. $ x_1 = 1, x_2 = 1, x_3 = 0 $ D. None of these 747) Let $ W $ be the set of all points $ (x, y) $ in $ R ^2$ for which $ x \ge 0$ and $ y \ge 0$ is A. $ x_1 = 3, x_2 = 2, x_3 = 0 $ C. $ x_1 = 1, x_2 = 1, x_3 = 0 $ D. None of these 748) The dimension of the subspace of $ M _{2\times 2}$ spanned by $ x_1 = -\frac{5}{2}, x_1 = \frac{1}{5}, x_1 = \frac{5}{2}, x_2 = \frac{1}{2}, x_3 = \frac{1}{$			D. None of these	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	745)		<u> </u>	A
The solution of this matrix $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 4 & 1 & 8 \\ 0 & 0 & 2 & 0 \end{bmatrix}$ is $\begin{bmatrix} A & x_1 = 3, x_2 = 2, x_3 = 0 \\ C & x_1 = 1, x_2 = 1, x_3 = 0 \end{bmatrix}$ B. $\begin{bmatrix} x_1 = -3, x_2 = 1, x_3 = 0 \\ None of these \end{bmatrix}$ None of these $\begin{bmatrix} 747 \\ A \\ Subspace of R^2 \\ C \\ Subspace of R^2 \\ Subspace o$		The solution of system of equations $2x_1 - x_2 + 3x_3$	$3 = 3, 3x_1 + x_2 - 3x_3 = 0, 1x_2 - x_3 + x_3 = 3$ 15	
The solution of this matrix $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 4 & 1 & 8 \\ 0 & 0 & 2 & 0 \end{bmatrix}$ is $\begin{bmatrix} A & x_1 = 3, x_2 = 2, x_3 = 0 \\ C & x_1 = 1, x_2 = 1, x_3 = 0 \end{bmatrix}$ B. $\begin{bmatrix} x_1 = -3, x_2 = 1, x_3 = 0 \\ None of these \end{bmatrix}$ None of these $\begin{bmatrix} 747 \\ A \\ Subspace of R^2 \\ C \\ Subspace of R^2 \\ Subspace o$		A. $ x_1 = 1, x_2 = 2, x_2 = 1$	B. $x_1 = -3, x_2 = 1, x_3 = 0$	
The solution of this matrix $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 4 & 1 & 8 \\ 0 & 0 & 2 & 0 \end{bmatrix}$ is $\begin{bmatrix} A & x_1 = 3, x_2 = 2, x_3 = 0 \\ C & x_1 = 1, x_2 = 1, x_3 = 0 \end{bmatrix}$ B. $\begin{bmatrix} x_1 = -3, x_2 = 1, x_3 = 0 \\ None of these \end{bmatrix}$ None of these $\begin{bmatrix} 747 \\ A \\ Subspace of R^2 \\ C \\ Subspace of R^2 \\ Subspace o$		C. $x_1 = 1, x_2 = 1, x_3 = 0$		
A. $x_1 = 3, x_2 = 2, x_3 = 0$ B. $x_1 = -3, x_2 = 1, x_3 = 0$ C. $x_1 = 1, x_2 = 1, x_3 = 0$ D. None of these 747) Let W be the set of all points (x, y) in R^2 for which $x \ge 0$ and $y \ge 0$ is A. subspace of R^2 B. not subspace of R^2 C. not defined D. None of these 748) The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ is B A. 1 B. 2 C. 3 D. None of these 749) A is an upper triangular with all diagonal entries zero, then $I + A$ is A. invertible C. nilpotent D. None of these				A
A. $x_1 = 3, x_2 = 2, x_3 = 0$ B. $x_1 = -3, x_2 = 1, x_3 = 0$ C. $x_1 = 1, x_2 = 1, x_3 = 0$ D. None of these 747) Let W be the set of all points (x, y) in R^2 for which $x \ge 0$ and $y \ge 0$ is A. subspace of R^2 B. not subspace of R^2 C. not defined D. None of these 748) The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ is B A. 1 B. 2 C. 3 D. None of these 749) A is an upper triangular with all diagonal entries zero, then $I + A$ is A. invertible C. nilpotent D. None of these				
A. $x_1 = 3, x_2 = 2, x_3 = 0$ B. $x_1 = -3, x_2 = 1, x_3 = 0$ C. $x_1 = 1, x_2 = 1, x_3 = 0$ D. None of these 747) Let W be the set of all points (x, y) in R^2 for which $x \ge 0$ and $y \ge 0$ is A. subspace of R^2 B. not subspace of R^2 C. not defined D. None of these 748) The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ is B A. 1 B. 2 C. 3 D. None of these 749) A is an upper triangular with all diagonal entries zero, then $I + A$ is A. invertible C. nilpotent D. None of these		The solution of this matrix $\begin{vmatrix} 0 & 4 & 1 & 8 \end{vmatrix}$ is		
C. $x_1 = 1, x_2 = 1, x_3 = 0$ D. None of these747)Let W be the set of all points (x, y) in R^2 for which $x \ge 0$ and $y \ge 0$ is A. subspace of R^2 C. not definedB. not subspace of R^2 O. None of these748)The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ isBA. IB. 2C. 3D. None of these749)A is an upper triangular with all diagonal entries zero, then $I + A$ isCA. invertibleB. IdempotentC. nilpotentD. None of these		$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix} 0$		
C. $x_1 = 1, x_2 = 1, x_3 = 0$ D. None of these747)Let W be the set of all points (x, y) in R^2 for which $x \ge 0$ and $y \ge 0$ is A. subspace of R^2 C. not definedB. not subspace of R^2 O. None of these748)The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ isBA. IB. 2C. 3D. None of these749)A is an upper triangular with all diagonal entries zero, then $I + A$ isCA. invertibleB. IdempotentC. nilpotentD. None of these		A 2 2 0		
747) Let W be the set of all points (x, y) in R^2 for which $x \ge 0$ and $y \ge 0$ is A. subspace of R^2 B. not subspace of R^2 C. not defined D. None of these 748) The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ is A. 1 B. 2 C. 3 D. None of these 749) A is an upper triangular with all diagonal entries zero, then $I + A$ is A. invertible C. nilpotent D. None of these 750) A Newtonian fluid is defined as the fluid which C				
A. subspace of R^2 C. not defined D. None of these The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ is A. 1 B. 2 C. 3 D. None of these A is an upper triangular with all diagonal entries zero, then $I + A$ is A. invertible C. nilpotent D. None of these To a limit of the subspace of $M_{2\times 2}$ spanned by $M_{$				
C. not defined D. None of these The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ is A. 1 B. 2 C. 3 D. None of these A is an upper triangular with all diagonal entries zero, then $I + A$ is A. invertible C. nilpotent D. None of these C None of these	747)			A
The dimension of the subspace of $M_{2\times 2}$ spanned by $\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ is A. 1 B. 2 C. 3 D. None of these A is an upper triangular with all diagonal entries zero, then $I + A$ is A. invertible B. Idempotent C. nilpotent D. None of these 750) A Newtonian fluid is defined as the fluid which C				
A. 1 B. 2 C. 3 D. None of these A. invertible C. nilpotent D. None of these B. Idempotent D. None of these C A. wewtonian fluid is defined as the fluid which C	749)	C. not defined		-
A. 1 B. 2 C. 3 D. None of these A. invertible C. nilpotent D. None of these B. Idempotent D. None of these C A. wewtonian fluid is defined as the fluid which C	/48)	The dimension of the subspace of $M_{2\times2}$ spanned by ($\begin{pmatrix} 1 & -5 \\ -4 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 5 \end{pmatrix}$ and $\begin{pmatrix} 2 & -4 \\ -5 & 7 \end{pmatrix}$ is	В
C. 3 D. None of these A is an upper triangular with all diagonal entries zero, then $I + A$ is A. invertible C. nilpotent D. None of these 750) A Newtonian fluid is defined as the fluid which C		·	1 2 / 1 3 / 1 7 /	
C. 3 D. None of these A is an upper triangular with all diagonal entries zero, then $I + A$ is A. invertible C. nilpotent D. None of these 750) A Newtonian fluid is defined as the fluid which C		A. 1	B. 2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
A. invertible C. nilpotent D. None of these 750) A Newtonian fluid is defined as the fluid which C	749)	A is an upper triangular with all diagonal entries		
C. nilpotent D. None of these 750) A Newtonian fluid is defined as the fluid which C		A. invertible	B. Idempotent	-C
750) A Newtonian fluid is defined as the fluid which C				
A. obeys Hook's law B. is incompressible	750)	*		С
		A. obeys Hook's law	B. is incompressible	

	C. obeys Newton's law of viscosity	D.	None of these	
751)	If the Reynolds number is less than 2000, the flow	w in a	pipe is	В
	A. Turbulent	B.	Laminar	
	C. Transition	D.	None of these	
752)	The continuity equation is the result of applicatio	n of tl	ne following law to the flow field	A
00)	A. Conservation of mass	B.	Conservation of energy	
	C. Newton's second law of motion	D.	None of these	
753)	When a problem states "The velocity of the water	r flow	in a pipe is 20 m/s", which of the following	В
	velocities is it talking about?	<u> </u>	TA 1	
	A. RMS velocity	В.	Average velocity	
754)	C. Relative velocity	D.	None of these	Α
734)	Power set topology is then any other.			A
	A. finer	В.	coarser	
	C. weaker topology	D.	None of these	
755)	Let $\tau_1 \& \tau_2$ are two topologies on $X \tau_1 \subseteq \tau_2$ the	en $ au_1$ i	is said to	C
	A. stronger topology	В.	finer topology	
	C. coarser topology	D.	None of these	
756)	Let $\tau_1 \& \tau_2$ are two topologies on $X \tau_1 \nsubseteq \tau_2$ the	en the		A
	A. In compare able topology	B.	Compare able topology	
7.57	C. Finer topology	D.	None of these	
757)	(7,)			C
	A. $\tau_A = \{\varphi, X\}$	В.	$\tau_A = \{X\}$	
758)	C. $\tau_A = \{\varphi, A\}$	D.	None of these	D
(30)	1) $A = \{a,b\} X = \{a,b,c\} \text{ and } \tau = \{\varphi, \{b,c\}, X\} \text{ th}$	en A	s equal to	В
	A. [b]	B.	X	
	C. {a}	D.	None of these	
759)	2) Let (X, τ) be a topological space and $A \subseteq X$	then	A is closed iff	С
	A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	В.		
	A. $\bar{A} = \bar{A}$		$\bar{A} = A$	
760)	$C. \mid A = \overline{A}$	D.	None of these	D
700)	Interior of A is union of all open set contain in		 \[\lambda \]	B
	$A. \bar{A} $ $C. A^d$	B. D.	A None of these	
761)	3) Let (X, τ) be a topological space and $A \subseteq X$			A
701)	S) Let (X, t) be a topological space and $A \subseteq X$	men.	A is open in	A
	A. $A^{\circ} = A$	B.	$ar{A} = ar{A}$	
	C. $A^{\circ} = \overline{A}$	D.	None of these	
762)	Let (X, τ) be a topological space Ext A is the large	gest of	pen set contain in	В
	A. X	В.	Ā	
	C. A°	D.	None of these	
763)	Int(X-A) is equal to			A
	A V	D	Int(A)	
	A. X C. Ext(A)	B. D.	Int(A) None of these	
<u> </u>	C. EAUA)	D.	TAOHE OF HIESE	

iscip		

A V A	Ь	Int(A)	
A. X-A C. X-Int(A)	В. D.	Int(A) None of these	
Disjoint union of B and $A^d =$		None of these	
A. $ \bar{A} $	В.	Ext(A)	
C. A	D.	None of these	
Every $\tau_1 - space$ is also a		•	
A. $\tau_1 - space$	В.	τ_4 – space	
C. τ_2 – space	D.	None of these	
If $\lim_{n\to\infty} a_n = l$, $a_n \to l$ as			
A. $n \to \infty$	В.	$n \rightarrow 0$	
C. $n \rightarrow 1$	D.	None of these	
The sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ is			
A. divergent	В.	convergent	
C. oscillating	D.	None of these	
$\log_3(27) =$	<u>.</u>		
A. 9	B.	24	
C. 6	D.	None of these	
A bounded sequence of real numbers	<u>'</u>		
A. converges	В.	diverges	
C. may converge	D.	None of these	
A Cauchy sequence of real numbers is			
A. not bounded	B.	oscillating	
C. divergent	D.	None of these	
The set R^+ is equivalent to		•	
A. Q	В.	$Q^{\scriptscriptstyle +}$	
C. <i>R</i>	D.	None of these	
The interval [0,1] is equivalent to	·		
A. Q	В.	[2,5]	
C. Z	D.	None of these	
The area bounded by the curves $y = \sin y$	x, y = 0, x =	0 and $x = \pi$ is	
A. 2	В.	0	
C. undefined	D.	None of these	
The area bounded by the curves $y = \sin y$	x, y = 0, x =	0 and $x = 2\pi$ is	

	C.	0	D.	None of these		
776)	[f	$a \le b$ and $c \le d$,			С	
	A.	$a+c \ge b+d$	B.	a+c < b+d		
	C.	$a+c \le b+d$	D.	None of these	1	
777)	Α	a part of many complex valued function which is	sir	gle value and analytic is known as	A	
	A	Branch	В.	Point		
	C	Section	D.	None of these		
778)	A	function is analytic if it is a function of			В	
	A		В.	z alone		
	C	\bar{z} alone	D.	None of these		
779)	Pie	ecewise smooth curve is also known as			С	
		Smooth Curve	В.	Regular Curve		
	C	Contour	D.	None of these	1	
780)	Γh	e product of complex number z and its conjugate	is		С	
	A	$ z ^3$	В.	$ z ^{1}$		
	C	$ z ^2$	D.	None of these		
781)	Ev	ery entire bounded function is			A	
	A	Constant	В.	Polynomial		
	C	Monomial	D.	None of these		
782)		the Singularity of $f(z) = \frac{z+3}{(z-1)(z-2)}$ are			С	
		z = 1,3		z = 1,0		
		z = 1,2		None of these		
783)		an integral curve along a simple closed curve is c			С	
		Multiple Curve		Jordan Curve		
	C	Contour Curve	D.	None of these		
784)	Be	rnoulli's equation cannot be applied when the flo	ow	is	D	
	A	rotational	В.	turbulent		
	C	unsteady	D.	all of the above		
785)	If a vector space V has a basis $B = \{b_1,, b_n\}$ then any set in V containing more than n vectors must					

	A Linearly independent	В.	Linearly dependent	
	C Both A and B	D.	None of these	
786)	A finite set that contains 0 is		<u>l</u>	В
	A Linearly independent	В.	Linearly dependent	
	C Both A and B	D.	None of these	
787)	If $x = 10^y$, $y =$			D
	A. <u>1</u>	В	. 1	
	ln(10)		ln(x)	
	C. e	D	None of these	
788)	A decreasing sequence			C
	A. is convergent		. is divergent	
	C. may diverge		None of these	
789)	For two non-empty sets A and B , the Cartesian	pro	oduct of A and B is denoted by	A
	A. $A \times B$		$B \times A$	
	C. AB		None of these	
790)	If x_0 is an element of a metric space (X,d) and	<i>r</i> >	$\{0, \{x \in X : d(x, x_0) > r\} = 1\}$	В
	A. $X - B(x_0; r)$	В	$\cdot X - \overline{B}(x_0; r)$	
	C. $X - S(x_0; r)$	D	. None of these	
791)	If a convergent sequence $(a_n)_{n=1}^{\infty}$ consists of finite	ly ı	many distinct elements and $A = \{a_1, a_2, a_3,\}$, the	A
	limit of the sequence			
	$A. \in A$	В	. ∉ A	
	C. is undefined	D	None of these	
792)	Which of the following is true			D
	A. $\pi < e$	В	$\pi = \frac{22}{7}$	
	C. π is rational		7. None of these	_
793)	A convergent sequence of real numbers is	Р	. profic of these	В
	A. unbounded	В	. Cauchy	
	C. oscillating	D	. None of these	
794) 42)	$\lim \frac{\sin(2x)}{\cos(x)} = \frac{1}{2}$			D
	$x \to 0$ $3x$	<u></u>	lo.	
	A. 1	_	. 0	
	$C. \left \frac{3}{2} \right $	P	None of these	
	4			

95)	The function $f: R^+ \to R$ defined by $f(x) =$	$\ln x$ is		C		
	A. decreasing	В. с	constant			
	C. increasing		None of these			
96)	The function $f: R \to R^+$ defined by $f(x) =$			A		
	A. one to one		not one to one			
	C. decreasing	D. [None of these	_		
97)	$\int_0^{\pi/4} \theta sec^2 \theta \ d\theta =$			C		
	$\frac{\ddot{A}}{4} + \frac{1}{2}ln2$	В.	$\frac{\pi}{4} + log 2$			
	A. $\frac{\pi}{4} + \frac{1}{2} ln2$ C. $\frac{\pi}{4} + \frac{1}{2} ln2$	D. I	None of these			
98)	The partial differential equations in $p + q = z$	² , is		A		
	A. of order 1 and is linear		of order 1 and is not linear			
	C. of order 2 and is not linear		None of these	7		
9)		1 1		С		
	A. (1, 1)	В. ((2,2)			
	C. (0, 0)	D. 1	(2, 2) None of these			
0)	What is the axis of the parabola $y^2 = 4ax$?					
	A. x=0	B. y	y=0			
	C. x=a		None of these			
1)		1 1		Α		
ĺ	A. $\sum a_k $ diverges	В	$\sum a_k $ converges	1		
	C. $\sum a_k $ absolutely converges	D 1	None of these			
2)	Which of the following statement is not true?	P-1	A tone of these	В		
-,	A. Any sequence has a unique limit.		The set $S = \{0, 1\}$ has exactly two accumulation points.			
	C. There exist a sequence of rational numbers					
	has an irrational limit.	s mai D. I	None of these			
13)	The continuity equation is the result of applica	tion of the	e following law to the flow field	A		
,,,	A. Conservation of mass		Conservation of energy	11		
	C. Newton's second law of motion		None of these			
4)	The series converges absolutely if	P.1	a tone of these	A		
	A. $ x < 1$	В.	x > 1			
	C. both A and B	D.	None of these			
)5)	The series diverges absolutely if			В		
	A. $ x < 1$	В.	x > 1			
	C. both A and B	D.	None of these			
)6)	f the power series $\sum_{n=0}^{\infty} c_n x^n$ converges for $x = x_1$,	then it co	nverges absolutely for all x such that	A		
	A. $ x < x_1 $	В.	$ x > x_1 $			
ŀ	$C. x = x_1 $	D.	None of these			

807)	f the power series $\sum_{n=0}^{\infty} c_n x^n$ diverges for $x = x_1$, then it diverges for all x such that						
	A.	$ x < x_1 $	В.	$ x > x_1 $			
	C.	$ x = x_1 $	D.	None of these			
808)	Let	the power series $\sum_{n=0}^{\infty} c_n x^n$ radius convergence R	and		D		
		$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$ ther	_				
	A.	f is continuous	В.	f is differentiable			
800)	C.	f is integrable	D.	all of these	A		
809)	$\sum_{n=0}^{\infty} \frac{x}{n}$	<u>''</u> =			A		
	A.	e^x	B.	e^{2x}			
010)	C.	0	D.	∞	Δ.		
810)	$\frac{1}{1-x}$	- = -	1		A		
	A.	$1 + x + x^2 + x^3 + \cdots$	В.	$1 - x - x^2 - x^3 - \cdots$			
811)	C.	Both A and B $y^3 y^5 y^7 \qquad y^{2n+1}$	ρ.	None of these	В		
011)	tan	Both A and B $x^{-1}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots$	··, -	1 < x < 1			
	This	s is known as					
	A.	Cauchy series	B.	Gregory's Series			
	C.	both A and B	D.	None of these			
812)	$\sum_{n=0}^{\infty} a_n$	${}_{n}x^{n} + \sum_{n=0}^{\infty} b_{n}x^{n} =$			В		
	A.	$\sum_{n=0}^{\infty} (a_n - b_n) x^n$	В.	$\sum_{n=0}^{\infty} (a_n + b_n) x^n$			
		both A and B	D.	None of these			
813)	$\left(\sum_{n=0}^{\infty}\right.$	$a_n x^n \left(\sum_{n=0}^{\infty} b_n x^n \right) =$			A		
		$\sum_{n=0}^{\infty} (c_n) x^n$	B.	$\sum_{n=0}^{\infty} x^n$			
		both A and B	D.	None of these			
814)	$\int_{0}^{1} x^{2} \epsilon$	$e^{-x^2}dx =$			С		
	A.	0.155	B.	0.167			
	C.	0.187	D.	None of these			

$\int_{0}^{2} \frac{1}{1+x^{4}} dx =$					
A. 0.494	В.	1.454			
C. 2.434	D.	None of these			
6)Let U and V be two vector spaces over the same field	F T		D		
transformation if:		Tien a map 1 . C // 13 canea a mica			
A. a) $T(u+v) = T(u) + T(v)$ for all	B.	a) $T(au+v) = aT(u) + T(v)$ for all			
$u, v \in U$		$a \in F$ and $u, v \in U$			
$u, v \in \mathcal{O}$		$u \in I$ and $u, v \in O$			
$T(au) = aT(u)$ for all $a \in F$, $u \in U$					
C. a) $T(au + bv) = aT(u) + bT(v)$ for all	D.	All of these			
$a \in F$ and $u, v \in U$					
7)The linear transformation is called			D		
A. Linear mapping	В.	linear function			
C. vector space homomorphism	D.	all of these			
18) A linear transformation $T:V\to V$ is called a zero transformation if:					
A. $T(v) = v$ for all $v \in V$	В.	$T(v) = 0$ for all $v \in V$			
C. $T(v) = v^2$ for all $v \in V$	D.	$T(v) = 1$ for all $v \in V$			
9) $T: U \rightarrow V$ be linear transformation then:	$: U \to V$ be linear transformation then:				
A. $T(u+v) = T(u) + T(v)$ for all $u, v \in U$	В.	$T(u-v) = T(u) - T(v) \text{ for all } u, v \in U$			
C. both A and B	D.	None of these			
$0)$ A mapping $T:R^3 o R^3$ is not a linear transformatior	ı if:		C		
A. $T(x, y, z) = (x - y, y - z, z - x)$	В.	T(x,y,z) = (x+y,3z,0)			
C. $T(x, y, z) = (x + y, x - y, z + 1)$	D.	None of these			
			Λ		
1)A one-one linear transformation is called	В.	hijostivo lingon turanefe unestiere	A		
A. Injective linear transformation C. surjective linear transformation	D.	bijective linear transformation None of these			
C. surjective linear transformation 2)A onto linear transformation is called	р.	None of these	В		
A. Injective linear transformation	В.	bijective linear transformation	ע		
C. surjective linear transformation	D.	None of these			
3)A one-one and onto linear transformation is called		rone of those	С		
<u>'</u>	и В.	hijostivo linear transformation	C		
A. Injective linear transformationC. surjective linear transformation	D.	bijective linear transformation None of these			
4)A one-one and onto linear transformation is called		profit of these	C		
A. bijective linear transformation	и В.	vector space homomorphism			
C. both A and B	D.	None of these			
5) $T_1:U \to V$ and $T_2:U \to V$ are said to be equal linear		L	В		

A. $T_1(u) \neq T_2(u)$ for all $u \in U$ C. $T_1(u) < T_2(u)$ for all $u \in U$ B. $T_1(u) = T_2(u)$ C. $T_1(u) < T_2(u)$ for all $u \in U$ D. $T_1(u) > T_2(u)$ 826) For any field F , $F^n \cong F^m$ if and only if A. $n = m$ B. $n \neq m$						
(826) For any field F , $F^n\cong F^m$ if and only if	for all $u \in U$					
	A					
$A \cdot n = m$ $B \cdot n \neq m$						
C. both A and B D. None of these						
Two finite dimensional vector spaces U and V over F are isomorphic and $\dim U = 5$ then						
A. $\dim V = 5$ B. $\dim V = 4$						
C. $\dim V = 3$ D. None of these						
28) There is no one-one onto linear transformation from	C					
A. R^2 to R^3 B. R^3 to R^4						
C. both A and B D. None of these						
(29) The vectors $(1, -2,3)$, $(5,6,-1)$ and $(3,2,1)$ are	В					
A. Linearly independent B. Linearly depend						
C. Both A and B D. None of these	Cit					
Dott / Card D	A					
30) The vectors (1,2,2,-1), (4,9,9,-4) and (5,8,9,-5) are A. Linearly independent B. Linearly dependent						
Zinearly macpendent — ——————————————————————————————————	ent					
C. Both A and B D. None of these 31) The polynomials $p_1 = 1 - x$, $p_2 = 5 + 3x - 2x^2$ and $p_3 = 1 + 3x - 3x$	⁻² are B					
A. Linearly independent B. Linearly dependent	ent					
C. Both A and B D. None of the	D					
32) A finite set that contains 0 is	В					
A. Linearly independent B. Linearly deper	dent					
C. Both A and B D. None of these						
33) A set of vectors $\{x, sinx\}$ is	A					
A. Linearly independent B. Linearly deper	dent					
C. Both A and B D. None of these						
34) A set of vectors {sin2x, sinxcosx} is	В					
A. Linearly independent B. Linearly deper	dent					
C. Both A and B D. None of these						
For what value(s) of h will y be in the subspace of R^3 spanned by v_1, v_2 $ \begin{pmatrix} 5 \\ -4 \\ -7 \end{pmatrix}, v_3 = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \text{ and } y = \begin{pmatrix} -4 \\ 3 \\ h \end{pmatrix} $ A. $h = -5,5$ B. $h = 5$	v_3 if $v_1 = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$					
A. $h = -5.5$ B. $h = 5$						
C. $ h = -1, 0, -1$ D. None of these						
	A					
(36) The set of all solutions of the homogenous equation $Ax = 0$ is known as						
36) The set of all solutions of the homogenous equation $Ax = 0$ is known as A. Null set B. trivial solution						
 36) The set of all solutions of the homogenous equation Ax = 0 is known as A. Null set B. trivial solution C. Non trivial D. None of these 						
86) The set of all solutions of the homogenous equation $Ax = 0$ is known as A. Null set B. trivial solution C. Non trivial D. None of these 87) $Null(A) = \{0\}$ if and only if the equation $Ax = 0$ has only the	В					
36) The set of all solutions of the homogenous equation $Ax = 0$ is known as A. Null set B. trivial solution C. Non trivial D. None of these 37) $Null(A) = \{0\}$ if and only if the equation $Ax = 0$ has only the A. Null set B. trivial solution	В					
36) The set of all solutions of the homogenous equation $Ax = 0$ is known as A. Null set C. Non trivial B. trivial solution D. None of these 37) $Null(A) = \{0\}$ if and only if the equation $Ax = 0$ has only the	B					

A. one-one	В.	onto				
C. Subspace	D.	None of these				
$P) \text{ If a vector space } V \text{ has a basis } B = \{b_1, \dots, b_n\} $	b_n } then any	set in V containing more than n vectors must	В			
A. Linearly independent	В.	Linearly dependent				
C. Both A and B	D.	None of these				
If a vector space V has a basis of n vectors	, then every b	pasis of V must consist of exactly	A			
A. <i>n</i> vectors	В.	n-1 vectors				
C. $n+1$ vectors	D.	None of these				
1) The dimension of zero vector space is	•		A			
A. Zero	В.	Infinite				
C. Not defined	D.	None of these				
2) The standard basis for the polynomial of degree	e n has		В			
A. <i>n</i> vectors	В.	n+1 vectors				
C. infinite vectors	D.	None of these				
3) Any subspace spanned by a single nonzero vec	tor. Such subs	paces are	Α			
A. lines through origin	В.	planes through origin				
C. not defined	D.	None of these				
44) The rank of A is the dimension of the						
A. column space of A	В.	planes through origin	A			
C. Polynomials	D.	None of these	_			
T of Justinians			A			
5) The dimensions of the column space and the			A			
A. Equal	<u>В.</u>	Not equal None of these	_			
int and it						
6) If A is a 7×9 matrix with a two-dimensional null space, then rank of A is						
A. 3	В.	5				
C. 8	D.	None of these	D			
7) Could a 6×9 matrix have a two dimensional	null space		В			
A. Yes	В.	No				
C. may or may not be	D.	None of these	Α.			
Let A be a an $n \times n$ invertible matrix then N	ull(A) is		A			
A. {0}	ь	0	-			
(*)	В.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
C. Infinite	D.	None of these	A			
$u = \begin{pmatrix} 6 \\ -5 \end{pmatrix}$ is an eigen vector of $A = \begin{pmatrix} 1 & 6 \\ 5 & 2 \end{pmatrix}$	or not?		A			
A. Yes	В.	No				
C. may or may not be	D.	None of these				
$u = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ is an eigen vector of $A = \begin{pmatrix} 1 & 6 \\ 5 & 3 \end{pmatrix}$	or not?		В			
A. Yes	В.	No				
C. may or may not be	D.	None of these				
1) The set $\{\sin^2 x, \cos^2 x, 5\}$ is			В			
A. Linearly independent	В.	Linearly dependent				
C. Both A and B	D.	None of these	1			
2) If $u_1 = (-1,2,4)$ and $u_2 = (5,-10,-20)$			В			
		- 1 27				
A. Linearly independent	В.	Linearly dependent	1			
C. Both A and B	D.	None of these				

3) If $u_1 = (3, -1), u_2 = (4, 5)$ and $u_3 = (-4, -1)$	7) then the	set (u ₁ , u ₂ , u ₃) is	В			
A. Linearly independent	В.	Linearly dependent				
C. Both A and B	D.	None of these				
4) If $p_1 = 3 - 2x + x^2$ and $p_2 = 6 - 4x + 2x$	x ² then the	set $\{p_1, p_2\}$ is	В			
A. Linearly independent	В.	Linearly dependent				
C. Both A and B	D.	None of these				
If $A = \begin{pmatrix} -3 & 4 \\ 2 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & -4 \\ -2 & 0 \end{pmatrix}$ in M_2	₂₂ , then the	e set $\{A, B\}$ is	В			
A. Linearly independent	В.	Linearly dependent				
C. Both A and B	D.	None of these				
6) The vectors $(3,8,7,-3)$, $(1,5,3,-1)$, $(2,-1)$			A			
A. Linearly independent	В.	Linearly dependent				
C. Both A and B	D.	None of these	A			
The Wronskian of $f_1 = \sin x$, $f_2 = \cos x$ and $f_3 = x \cos x$ is $\frac{2 \sin x}{2 \sin x} = \frac{1}{8} \sin 2x$						
A. $2\sin x$	В.	$\sin 2x$				
C. zero	D.	None of these	В			
The Wronskian of $f_1 = 1$, $f_2 = x$ and $f_3 = e^x$ is						
A. xe^x	В.	e ^x	4			
C. zero D. None of these						
9) The Wronskian of $f_1 = 1$, $f_2 = x$ and $f_3 = x^{\frac{1}{2}}$	- 1S B.	e^x	A			
A. 2 C. Zero	D.	None of these				
0) If $\left(\lambda, -\frac{1}{2}, -\frac{1}{2}\right), \left(-\frac{1}{2}, \lambda, -\frac{1}{2}\right), \left(-\frac{1}{2}, -\frac{1}{2}, \lambda\right)$			A			
A. $\lambda = 1, -\frac{1}{2}$	В.	$\lambda = 1, -1$				
C. $\lambda = -\frac{1}{2}$	D.	None of these				
1) The vectors $(-3,7)$ and $(5,5)$ in \mathbb{R}^2 form			A			
A. Basis for R^2	В.	Linearly dependent set	-			
C. Infinite set	D.	None of these				
2) If W is subspace of a finite dimensional vector			A			
A. finite dimensional	В.	Infinite dimensional				
C. Basis for <i>V</i>	D.	None of these				
3) v_3 can be added to linearly independent sets	s (1, -2,3)	(0,5,-3) to form basis then	A			
A. $v_3 = (0,0,1)$	В.	$v_3 = (0,0,0)$				
C. Both A and B	D.	None of these				
4) The area of the triangle formed by the tange the same end of the latus rectum and the axi		normal to the parabola $y^2 = 4ax$ both drawn at rabola is	С			

	A.	√2	B.	$2a^2$					
	11.	$2^{32}a^2$	D .						
	C.	$4a^2$	D.	None of these					
	C.	44	D.	None of these					
865)	The	clocus of the point from which tangents to a pa	rabol	a are at right angles is a	A				
	A.	Straight line	B.	Circle					
	C.	Pair of straight line	D.	None of these					
866)	Giv	en the two ends of the latus rectum, the maxim	num n	umber of parabolas that can be drawn is	В				
	A.	1	B.	2					
	C.	0	D.	Infinity					
867)	If th	ne focus of the parabola is (-2, 1) and the direc	trix h	as the equation $x + y = 3$ then the vertex is	С				
				(-1, 1/2)					
	A.	(0,3)	B.						
	C.	(-1, 2)	D.	(2,-1)					
868)	The	e shortest distance between the parabola $y^2 = 4x^2$	x and	the circle $x^2 + y^2 + 6x - 12y + 20 = 0$ is	A				
	A.	$\sqrt{2} - 5$	B.	0					
	C.	√2	D.	1					
		3 +5							
869)	If li	ne $y = 2x + 1/4$ is tangent to $y^2 = 4ax$, then a is	s equa	l to	A				
	A.	1/2	B.	1					
	C.	2	D.	None of these					
870)	The Cartesian equation of the curve whose parametric equations are $x = t^2 + 2t + 3$ and $y = t + 1$ is								
		1		A. $y = (x-1)^2 + 2(y-1) + 3$ B. $x = (y-1)^2 + 2(y-1) + 5$					
	A.	1	В.	$x = (y-1)^2 + 2(y-1) + 5$					
	A.	1	В.	$x = (y-1)^2 + 2(y-1) + 5$					
	A.	1	<i>B</i> . D.	$x = (y-1)^2 + 2(y-1) + 5$ None of these					
971	C.	$y = (x-1)^{2} + 2(y-1) + 3$ $x = y^{2} + 2$	D.	None of these					
871)	C.	$y = (x-1)^2 + 2(y-1) + 3$	D.	None of these	D				

	A.	(6a, – 9a)	B.	(-6a, 9a)	
_	C.	(–9a, 6a)	D.	(9a, -6a)	
872)	The	tangents from the origin to the parabola $y^2 + 4$	$\frac{1}{4} = 4x$	inclined of	В
-	A.	$\pi/6$	B.	$\pi/4$	-
-	C.	$\pi/3$	D.	$\pi/2$	_
873)	If th	the line $y = x + k$ is a normal to the parabola $y^2 = x + k$	= 4x t	hen k can have the value	С
-	A.	$2\sqrt{2}$	B.	4	
-	C.	-3	D.	3	
874)	The	e number of tangents to the parabola $y^2 = 8x$ thr	ough	(2, 1) is	A
-	A.	0	B.	1	-
-	C.	2	D.	None of these	
875)	The	e graph represented by the equations $x = sin^2t$, y	y=2	cost is	A
-	A.	Parabola	B.	Circle	
-	C.	Hyperbola	D.	None of these	
876)		e point of intersection of the tangents of the para the value 1 and 2 are	abola	$y^2 = 4x$ at the points, where the parameter t	С
=	A.	(3, 8)	B.	(4, 5)	_
-	C.	(2, 3)	D.	(4, 6)	
877)	If ((2, 0) is the vertex and y - axis the directrix of the	ne par	abola, then the focus is	С
-	A.	(2, 0)	B.	(-2, 0)	
-	C.	(4, 0)	D.	(-4, 0)	
878)		e equation of the parabola whose vertex and foc	us lie	on the x - axis at distances a and a_1 from the	В
-		gin respectively, is	T		
	A.	$y^2 = 4(a_1 - a)x$	В.	$y^2 = 4(a_1 - a) (x - a)$	
-	C.	$y^2 = 4(a_1 - a)(x - a_1)$	D.	None of these	

879)	879) If the line $x - 1 = 0$ is the directrix of the parabola $y^2 - kx + 8 = 0$, then one of the values of k is						
	A.	1/8	B.	8			
	C.	4	D.	1/4			
880)		the point $P(4, -2)$ is one end of the focal chord gent at Q is	PQ o	If the parabola $y^2 = x$, then the slope of the	С		
	A.	-1/4	B.	1/4			
	C.	4	D.	-4			
881)	The line $y = mx + c$ intersects the circle $x^2 + y^2 = a^2$ at the most ofpoints.						
	A.	1	B.	2			
	C.	3	D.	4			
882)	The	e eccentricity of an ellipse is			D		
	A.	e=1	В.	e < 1			
	C.	e > 1	D.	0 < e < 1			
883)	The	e perpendicular distance from the point (3,–4) to	o the	line $3x^2 - 4x + 10 = 0$	A		
	A.	7	B.	8			
	C.	9	D.	10			
884)	Wh	at is the length of latus rectum If the distance b	etwee	en vertex and focus is 3?	В		
	A.	8	B.	12			
	C.	4	D.	None of these			
885)	The	e line perpendicular to the tangent line is called		I	A		
	A.	normal line	B.	secant line			
	C.	limit	D.	derivative			
886)	The	e point of a parabola which is closest to the focu	ıs is tl	he of the parabola.	A		
	A.	vertex	B.	latus rectum			
	C.	directrix	D.	eccentricity			

887)	The center of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$ is ?						
	A.	(2,-3)	B.	(-2,3)			
	C.	(-4,6)	D.	(4,-6)			
888)	Wh	ich point of a parabola is closest to the focus is	s?		A		
	A.	directrix	B.	vertex			
	C.	eccentricity	D.	latus rectum			
889)	If t	ength of latus rectum is?	D				
	A.	6	B.	8			
	C.	10	D.	12			
890)	The	e focus of the parabola $y^2 = -8(x-3)$ is ?	1	1	В		
	A.	(0,0)	B.	(1,0)			
	C.	(0,1)	D.	(1,1)			
891)	If t	the discriminant of a conic is $h^2 - ab = 0$, then	n it re	presents a	В		
	A.	circle	B.	parabola			
	C.	hyperbola	D.	ellipse			
892)	The	e radius of the circle $4x^2 + 4y^2 - 8x + 12y -$	25 =	0 is ?	С		
	A.	$\sqrt{57}$	B.	$\sqrt{67}$			
	C.	$\sqrt{77}$	D.	$\sqrt{87}$			
893)	A li	ine which is perpendicular to base of cone and	passe	s through vertex of cone is called of	D		
	A.	rulings	B.	nap			
	C.	vertex	D.	axis			
894)	If t	the cutting plane is parallel to the generator of	the co	ne and cut only one nap is called			
	A.	Circle	B.	hyperbola			
	C.	parabola	D.	ellipse			

895)	The	e perpendicular distance from the point (3, -4) to	o the l	line $3x - 4y + 10 = 0$	A		
•	A.	7	B.	8			
-	C.	9	D.	10	=		
896)	The	e locus of the point from which the tangent to the	ne circ	cles $x^2 + y^2 - 4 = 0$ and $x^2 + y^2 - 8x + 15 = 0$	В		
	are	equal is given by the equation					
	A.	8x + 19 = 0	В.	8x - 19 = 0			
•	C.	4x - 19 = 0	D.	4x + 19 = 0			
897)	The number of tangents that can be drawn from $(1, 2)$ to $x^2 + y^2 = 5$ is						
-	A.	0	B.	1			
•	C.	2	D.	More than 2	_		
898)	The	e equation of parabola whose focus is (3, 0) and	direc	etrix is $3x + 4y = 1$ is	D		
-	A.	$16x^2 - 9y^2 - 24xy - 144x + 8y + 224 = 0$	B.	$16x^2 + 9y^2 - 24xy - 144x + 8y - 224 = 0$	_		
-	C.	$16x^2 + 9y^2 - 24xy - 144x - 8y + 224 = 0$	D.	$16x^2 + 9y^2 - 24xy - 144x + 8y + 224 = 0$	_		
899)	The	e center of the ellipse $(x + y - 2)^2/9 + (x - y)^2/2$	16 = 1	<i>l</i> is	D		
	A.	(0, 0)	B.	(0, 1)			
	C.	(1, 0)	D.	(1, 1)			
900)		e equation of parabola with vertex at origin the	axis is	s along x-axis and passing through the point	В		
		3) is	1				
	A.	$y^2 = 9x$	В.	$y^2 = 9x/2$			
	C.	$y^2 = 2x$	D.	$y^2 = 2x/9$			
901)	At v	what point of the parabola $x^2 = 9y$ is the absciss	sa thre	ee times that of ordinate	В		
-	A.	(1, 1)	B.	(3, 1)			
-	C.	(-3, 1)	D.	(-3, -3)			
902)		nan running a race course notes that the sum of		<u> </u>	D		
		ays 10 meter and the distance between the flag man is	posts	is 8 meter. The equation of posts traced by			
-	A .	$x^2/9 + y^2/5 = 1$	B.	$x^2/9 + y^2/25 = 1$	_		
			~.	1			

	C.	$x^2/5 + y^2/9 = 1$	D.	$x^2/25 + y^2/9 = 1$			
903)	In a	n ellipse, the distance between its foci is 6 and	its mi	inor axis is 8 then its eccentricity is	С		
-	A.	4/5	B.	1/√52			
-	C.	3/5	D.	1/2			
904)	O(4) If the length of the tangent from the origin to the circle centered at (2, 3) is 2 then the equation of the circle is						
=	A.	$(x+2)^2 + (y-3)^2 = 3^2$	B.	$(x-2)^2 + (y+3)^2 = 3^2$			
-	C.	$(x-2)^2 + (y-3)^2 = 3^2$	D.	$(x+2)^2 + (y+3)^2 = 3^2$			
905)	The	parametric representation $(2 + t^2, 2t + 1)$ repre	esents		A		
-	A.	a parabola	B.	a hyperbola			
-	C.	an ellipse	D.	a circle			
906)	If a	parabolic reflector is 20 cm in diameter and 5 c	cm de	ep then the focus of parabolic reflector is	С		
-	A.	(0 0)	B.	(0 5)			
-	C.	(5 0)	D.	(5 5)			
907)	The	parametric coordinate of any point of the para	bola y	$v^2 = 4ax$ is	С		
-	A.	$(-at^2, -2at)$	B.	(-at², 2at)			
-	C.	$(a \sin^2 t, -2a \sin t)$	D.	$(a \sin t, -2a \sin t)$			
908)	The	equation of parabola with vertex (-2, 1) and fo	cus (-	-2, 4) is	В		
-	A.	$10y = x^2 + 4x + 16$	B.	$12y = x^2 + 4x + 16$			
-	C.	$12y = x^2 + 4x$	D.	$12y = x^2 + 4x + 8$			
909)	The	equation of a hyperbola with foci on the x-axis	s is		В		
-	A.	$x^2/a^2 + y^2/b^2 = 1$	B.	$x^2/a^2 - y^2/b^2 = 1$			
-	C.	$x^2 + y^2 = (a^2 + b^2)$	D.	$x^2 - y^2 = (a^2 + b^2)$			
910)	The	e line $lx + my + n = 0$ will touches the parabola	$y^2 = $	4ax if	A		
-	A.	$ln = am^2$	B.	ln = am			
-	C.	$ln = a^2 m^2$	D.	$ln = a^2 m$			

911)	The center of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$ is					
	A.	(2,-3)	B.	(-2,3)		
	C.	(-4,6)	D.	(4,-6)		
912)	The	e radius of the circle $4x^2 + 4y^2 - 8x + 12y - 25$	= 0 is		С	
	A.	√57/4	B.	√77/4		
	C.	√77/2	D.	√87/4		
913)	If (a	a, b) is the mid point of a chord passing through	n the v	vertex of the parabola $y^2 = 4x$, then	D	
	A.	a = 2b	B.	2a = b		
	C.	$a^2 = 2b$	D.	$2a = b^2$		
914)		od of length 12 CM moves with its and always		-	A	
	or t	he locus of a point P on the road which is 3 cm	irom	the end in contact with the x-axis is		
	A.	$x^2/81 + y^2/9 = 1$	B.	$x^2/9 + y^2/81 = 1$		
	C.	$x^2/169 + y^2/9 = 1$	D.	$x^2/9 + y^2/169 = 1$		
915)	If th	ne diameter of cylinder is 8cm and its height is	16cm	then the volume of cylinder is	A	
	A.	804.352cm ³	B.	1000cm ³		
	C.	900cm ³	D.	850cm ³		
916)	If th	ne volume of cylinder is 900cm² with the heigh	t of 20	Ocm then the diameter of the cylinder is	В	
	A.	24cm²	B.	7.57cm ²		
	C.	9.57cm ²	D.	12.23cm ²		
917)		rectangular tank is 21cm long, 13cm wide and	18cm	h high and contains water up to a height of	D	
	11c	m then the total surface area is				
	A.	1450cm ²	B.	1350cm ²		
			1		1	

	C.	1200cm ²	D.	1021cm ²		
918)	If circular metal sheet is 0.65cm thick and of 50cm in diameter is melted and recast into cylindrical bar with 8cm diameter then the length of bar will be					
	A.	24.41cm	B.	35.41cm		
	C.	40.41cm	D.	30.41cm		
919)	If a	cuboid is 3.2 cm high, 8.9cm long and 4.7 wid	e then	n total surface area is	A	
	A.	170.7cm ²	B.	180cm ²		
	C.	205.7cm ²	D.	325.8cm ²		
920)	Ву	converting the 5.6m ² into the cm ² , the answer v	vill be		В	
	A.	0.0056cm ²	B.	5600cm ²	-	
	C.	56000cm ²	D.	560cm ²		
921)	Aı	rectangular field is 40m long and 30m wide. Th	e peri	meter of rectangular field is	D	
	A.	200m²	B.	180m²		
	C.	160m²	D.	140m²		
922)	Ву	converting the 0.96km² into m²(meter square),	the an	swer will be	В	
	A.	9600m²	B.	960m²		

-	C.	0.96m²	D.	960000m²	
923)	By	converting the 4.8mm² into the cm², the answer	r will	be	A
-	A.	0.048cm ²	В.	0.48cm ²	1
-	C.	48cm ²	D.	480cm ²	
	C.	4001117	D.	46001117	
924)	Ву	converting the 80.2km² into the hectare, the an	iswer	will be	В
	A.	0.08020ha	B.	8020ha	
•	C.	802ha	D.	0.802ha	
925)	The	 e flat surface in which two points are joined by	using	straight line is classified as	D
		line		ray	_
	A.		B.		
-					_
	C.	intersecting line	D.	plane	
926)		ne line segment is extended in two directions in sified as	defini	itely from each of the two points then it is	С
-			Ъ	I ,	_
	A.	intersecting line	В.	plane	
	C.	line	D.	ray	
927)	The	e type of quadrilateral which has one pair of pa	rallel	sides is called	D
-	A.	triangle	B.	semi-circle	-

	C.	parallelogram	D.	trapezium	
928)	If th	ne base of parallelogram is 19cm and the height	t is 11	cm then the area of parallelogram is	В
	A.	105cm ²	B.	209cm ²	
	C.	1102	D.	170cm ²	
929)		lne width of rectangle is 10cm lass than its lengt angle is	h and	its perimeter is 50cm then the width of	С
	A.	58cm²	B.	64cm ²	
	C.	15cm ²	D.	30cm ²	
930)	Cor	overting the cm ² into the m ² , the 6.5cm ² is equa	l to		A
	A.	0.00065m ²	B.	0.0065m²	
	C.	0.65m ²	D.	65m²	
931)	Ву	converting the 78580m² into hectare(ha), the ar	nswer	will be	В
	A.	785.80ha	B.	0.0007858ha	
	C.	0.07858ha	D.	78.580ha	
932)	If th	lne length of a square field is 12cm then the peri	meter	of square will be	A
	A.	48cm ²	B.	24cm ²	

	C.	36cm ²	D.	50cm ²	
	C.	Sociii	D.	Joenn	
933)	If th	ne area of circle is 112m² then the circumference	ce of t	he circle is	В
		27.68m²		37.68m²	
	A.		B.		
	C.	50.68m ²	D.	55.68m ²	
	C.		Δ.		
934)	By	converting the 62.7m ² into km ² , the answer wil	ll be		A
	A.	0.0000627km ²	В.	0.0627km²	
	A.	0.000002/KIII-	Б.	0.0027KIII-	
	C.	0.00627km²	D.	6270km²	
025)	If 4	he length of meetingle is 15 cm and width of me	otom ol	a is 5 am than the area of reatenals is	С
935)	11 (he length of rectangle is 15cm and width of rec			
	A.	35cm ²	B.	40cm ²	
	C.	75cm ²	D.	70cm ²	_
936)	Ву	converting the 85600mm ² into m ² (meter square	e), the	e answer will be	C
	A.	8560m²	B.	856m²	
	C	0.0856m ²	D	9540000m2	
	C.	0.0836m²	D.	8560000m ²	
937)	By converting the 60.8cm² into the mm², the answer will be				
	A.	0.0608mm²	B.	0.608mm²	
				_	

	C.	6080mm²	D.	608mm²			
938)	If the diameter of a truck wheel is 0.65m and truck is travelling at 40km/h then the number of revolutions per minute made by truck wheel is						
	A.	3223	B.	5223			
	C.	6223	D.	8500			
939)	If th	ne height of trapezium is 8cm and the sum of pa	l arallel	sides is 16cm then the area of trapezium is	С		
	A.	85cm ²	B.	54cm ²			
	C.	64cm ²	D.	32cm ²			
940)	The	kind of quadrilateral in which opposite pairs o	of the	sides are parallel and equal is called	A		
	A.	parallelogram	B.	trapezium			
	C.	triangle	D.	semi-circle			
941)	Vol	ume of seashells, pebbles and keys can be mea	sured	by	В		
	A.	measuring cylinder	B.	displacement method			
	C.	Vernier caliper	D.	measuring flask			
942)	The	e apparatus commonly used to measure volume	of lie	quids is	A		
	A.	measuring cylinder	B.	measuring tapes			

-	C.	jar	D.	cylinder	
943)	The	amount of 1 liter contains		<u>l</u>	В
	A.	100ml	B.	1000ml	
	C.	10mm	D.	10kg	
944)	The	volume is measured by help of a curve made i	n mes	asuring cylinder called	A
777)			,		
	A.	meniscus curve	B.	round curve	
	C.	slanting curve	D.	volume curve	
945)	The	volume of liquids can be measured by using d	iffere	nt instruments which includes	D
	A.	cylinders	B.	volumetric flasks	
	<u> </u>	burettes or pipettes	D	all of them	
	C.		D.		
946)	A c	ylindrical pencil sharpened at one edge is the co	ombii	nation of	A
	A.	a cone and a cylinder	B.	frustum of a cone and a cylinder	
	C.	a hemisphere and a cylinder	D.	two cylinders	
947)		one is cut through a plane parallel to its base ar			A
	plar	ne is removed. The new part that is left over on	the o	ther side of the plane is called	
	A.	a frustum of a cone	B.	cone	
	C.	cylinder	D.	sphere	
948)	Du	ring conversion of a solid from one shape to an	other	, the volume of the new shape will	С

	A.	increase	B.	decrease		
	C.	remain unaltered	D.	be doubled		
949)	A ri	ght circular cylinder of radius r cm and height	h cm	(h>2r) just encloses a sphere of diameter	В	
	A.	r cm	B.	2r cm		
	C.	h cm	D.	2h cm		
950)	A hollow cube of internal edge 22cm is filled with spherical marbles of diameter 0.5 cm and it is assumed that 1/8th space of the cube remains unfilled. Then the number of marbles that the cube can accommodate is					
	A.	142244	B.	142396		
	C.	142496	D.	142596		
951)		metallic spherical shell of internal and external recast into the form of a cone with base diame			В	
	A.	12cm	B.	14cm		
	C.	15cm	D.	18cm		
952)		olid piece of iron in the form of a cuboid of din d sphere. The radius of the sphere is	nensio	ons $49\text{cm} \times 33\text{cm} \times 24\text{cm}$, is mound to form a	A	
	A.	21cm	B.	23cm		
	C.	25cm	D.	19cm		
953)		wo solid hemispheres of same base radii r, are	joined	l together along their bases, then curved	A	
		face area of this new solid is	Τ_			
	A.	$4\pi r^2$	В.	$6\pi r^2$		
	C.	$3\pi r^2$	D.	$8\pi r^2$		
954)	A solid cylinder of radius <i>r</i> and height <i>h</i> is placed over other cylinder of same height and radius. The total surface area of the shape so formed is					
	A.	$4\pi rh + 4\pi r^2$	B.	$4\pi rh - 4\pi r^2$		
	C.	$4\pi rh + 2\pi r^2$	D.	$4\pi rh - 2\pi r^2$		
955)	55) The radii of the top and bottom of a bucket of slant height 45cm are 28cm and 7 cm respectively. The curved surface area of the bucket is					

	A.	4950 cm ²	B.	4951 cm ²		
-	C.	4952 cm ²	D.	4953 cm ²		
956)		medicine-capsule is in the shape of a cylinder o		-	A	
	eacl	n of its ends. The length of entire capsule is 2 c	m. Th	ne capacity of the capsule is		
	A.	0.36 cm^3	B.	0.35 cm^3		
-	C.	0.34 cm^3	D.	0.33 cm ³		
957)		elve solid spheres of the same size are made by and height 16 cm. The diameter of each sphere		ing a solid metallic cylinder of base diameter 2	С	
	A.	4 cm	B.	3 cm		
-	C.	2 cm	D.	6 cm		
958)		e diameters of the two circular ends of the bucker. The capacity of the bucket is	et are	44 cm and 24 cm. The height of the bucket is	A	
•	A.	32.7 litres	B.	33.7 litres		
-	C.	34.7 litres	D.	31.7 litres		
959)	Vol	umes of two spheres are in the ratio 64:27. The	ratio	of their surface areas is	D	
•	A.	3:4	B.	4:3		
•	C.	9:16	D.	16:9		
960)		nason constructs a wall of dimensions 270cm×			В	
		$5 \text{cm} \times 11.25 \text{cm} \times 8.75 \text{cm}$ and it is assumed that the of bricks used to construct the wall is:	t 1/8 s	space is covered by the mortar. Then the		
	A.	11100	В.	11200		
	C.	11000	D.	11300		
961)		s the point of intersection of two equal chords A	Band		D	
, (1)	and ODB are					
	A.	Equilateral but not similar	B.	Isosceles but not similar		
	C.	Equilateral and similar	D.	Isosceles and similar		
962)		and E are respectively the midpoints on the side	es AB	and AC of a triangle ABC and BC = 6 cm . If	В	
	DE BC, then the length of DE (in cm) is					

Discipl	

	A.	2.5	B.	3		
-	C.	5	D.	6		
963)	Areas of two similar triangles are 36 cm2 and 100 cm2. If the length of a side of the larger triangle is 20 cm, then the length of the corresponding side of the smaller triangle is					
-	A.	12cm	B.	13cm		
-	C.	14cm	D.	15cm		
964)	Inve	erse Laplace transformation $f(s) = 4/(s^2 - 2s^2)$	s – 3) of	С	
	A.	$ 2e^{3t-}e^t \\ a^2 $	B.	$e^{-3t}-e^t$		
•	C.	$e^{-3t}e^{-t}$	D.	$e^{3t-}e^{-t}$		
965)	Div	ergence operation result will always			В	
-	A.	vector	B.	Scalar		
-	C.	Vector or Scalar	D.	None of these		
966)	The	rectangular coordinate system is also called	I		В	
-	A.	Polar coordinate system	B.	Cartesian coordinate system		
-	C.	Cylindrical coordinate system	D.	Spherical coordinate system		
967)		nat is the minimum number of coplanar vectors sultant of zero?	with	different magnitudes that can be added to get	С	
-	A.	$\hat{\imath} + \hat{\jmath} + 5\hat{k}$	B.	$2\hat{\imath} + 4\hat{\jmath} + 6\hat{k}$		
-	C.	$\hat{i} + \hat{j}$	D.	$\hat{\imath} + \hat{\jmath} + 10\hat{k}$		
968)		is a scalar quantity		I	В	
=	A.	Distance	B.	Momentum		
=	C.	Torque	D.	Acceleration		
969)	Cro	ss product is also known as?	1	1	В	
-	A.	scalar product	B.	vector product		

	C.	dot product	D.	multiplication	
970)	Wh	at is the area of the parallelogram which repres	ented	by vectors $\vec{P} = 2\hat{\imath} + 3\hat{\jmath}$ and $\vec{Q} = \hat{\imath} + 4\hat{\jmath}$	A
-	A.	5 units	B.	10 units	
-	C.	15 units	D.	20 units	
971)		t is not possible to draw any tangent from the p θ belongs to	oint ($1/4$, 1) to the parabola $y^2 = 4x \cos\theta + \sin^2\theta$,	С
	uici	10 octongs to			
-	A.	[-π/2 π/2]	B.	$[-\pi/2 \ \pi/2] - \{0\}$	
	C.	$(-\pi/2 \pi/2) - \{0\}$	D.	none of these	
972)	С.	(-102102) - {0}	D.	none of these	В
912)	Th	a number of food shord(s) of length $4/7$ in the	m a ma h	alo $7.2 - 9.15$	Б
-		e number of focal chord(s) of length 4/7 in the			
	A.	1	В.	zero	
	C.	infinite	D.	none of these	
973)		ends of line segment are $P(1, 3)$ and $Q(1, 1)$. = $1 : \lambda$. If R is an interior point of parabola y^2		_	A
	~		ŕ		
-	A.	$\lambda \in (0, 1)$	В.	$\lambda \in (-3/5, 1)$	
-	C.	$\lambda \in (1/2, 3/5)$	D.	none of these	
974)		et of parallel chords of the parabola $y^2 = 4ax$ ha			С
) (-1)	11.50	or or parameteriorus of the parabola $y = 4ax$ he	ive tir	en ind points on	
-	A.	any straight line through the vertex	B.	any straight line through the focus	
-					
075)	C.	a straight line parallel to the axis	D.	another parabola	
975)		equation of the line of the shortest distance be $-2y + 4 = 0$ is	tween	the parabola $y^2 = 4x$ and the circle $x^2 + y^2 - y^2$	A
-	A.	x + y = 3	В.	x-y=3	
		•		·	

	C.	2x + y = 5	D.	none of these		
076)	TC	•	<u> </u>		D	
9/6)	If normals are drawn from the extremities of the latus rectum of a parabola then normals are B					
			1_			
	A.	parallel to each other	В.	perpendicular to each other		
	C.	intersect at the 450	D.	none of these		
977)				at the point whose abscissa is k where $k \in [1, 1]$	С	
	2] t] the y-axis and the straight line $y = k^2$ has greatest area if k is equal to				
	A.	1	B.	3		
	C.	2	D.	none of these		
978) A parabola $y^2 = 4ax$ and $x^2 = 4by$ intersect at two points. A				A circle is passed through one of the	D	
		-	directr	rix of first parabola then the locus of the centre		
	of the	he circle is				
	A.	straight line	B.	ellipse		
	C.	circle	D.	parabola		
979)	A c	ircle with centre lying on the focus of the parab	ola y²	$\frac{1}{2} = 2px$ such that it touches the directrix of the	A	
	para	ne parabola is				
	Α.	(p/2, p)	В.	(p/2, 2p)		
·			D			
	C.	(-p/2, p)	D.	(-p/2, -p)		
980)	The point $(1, 2)$ is one extremity of focal chord of parabola $y^2 = 4x$. The length of this focal chord is					
	A.	2	B.	4		
	C.	6	D.	none of these		
981)	If AFB is a focal chord of the parabola $y^2 = 4ax$ and AF = 4, FB = 5, then the latus-rectum of the					
	If AFB is a focal chord of the parabola $y^2 = 4ax$ and AF = 4, FB = 5, then the latus-rectum of the parabola is equal to					

	A.	80/9	B.	9/80	
	C.	9	D.	80	
982)	If th	9 D. 80 ee normals can be drawn from (h, 2) to the parabola $y^2 = -4x$, then $ \begin{array}{c cccc} h < -2 & B. & h > 2 \\ \hline -2 < h < 2 & D. & h is any real number \\ e line y - \sqrt{x} + 3 = 0 cuts the parabola y^2 = x + 2 at A and B, and if P \equiv (\sqrt{3}, 0), then PA. PB is to \begin{array}{c cccc} \hline 2(\sqrt{3} + 2)/3 & B. & 4\sqrt{3}/2 \\ \hline 4(2 - \sqrt{3})/3 & D. & 4(\sqrt{3} + 2)/3 \end{array} $			
	A.	h < -2	B.	h > 2	
	C.	-2 < h < 2	D.	h is any real number	
983)		he line $y - \sqrt{x + 3} = 0$ cuts the parabola $y^2 = x$ al to	+ 2 at	A and B, and if $P \equiv (\sqrt{3}, 0)$, then PA. PB is	D
	A.	$2(\sqrt{3}+2)/3$	B.	$4\sqrt{3/2}$	
	C.	<i>4</i> (2-√3)/3	D.	$4(\sqrt{3}+2)/3$	
984)	If th		$(at^2, 2)$	(at) cuts the parabola again at $(aT^2, 2aT)$, then	A
	A.	$T^2 \ge 8$	В.	$T \in (-\infty, -8) \cup (8, \infty)$	
	C.	$-2 \le T \le 2$	D.	$T^2 < 8$	
985)		ne locus of point of intersection of any tangent to the parabola $y^2 = 4a$ (x – 2) with a line expendicular to it and passing through the focus, is			
	A.	x = 1	B.	x = 2	
	C.	x = 0	D.	none of these	
986)	The	e set $\{1, -1, i, -i\}$			В
	A.	Is a group under '+'	B.	Is a group under '.'	
	C.	Is not a group	D.	none of these	
987)	If n	$v = \frac{-1 + \sqrt{-3}}{2}$, the set $\{1, w, w^2\}$			A
	A.	Is a group under '.'	B.	Is a group under '+'	
	C.	Is not a group	D.	none of these	

988) Th	The set of complex numbers is				
A.	Not a group under '+'	B.	Not a group under '+'		
C.	Is a filed	D.	none of these		
989) W) Which one is not a filed				
A.	Z	В.	Q		
C.	R	D.	none of these		
990) Th	The set $\{1, -1, i, -i\}$				
A.	Not a group	В.	Is a cyclic group		
C.	In not abelian group	D.	none of these		
991) W	Which one is a semi group				
A.	P under '+'	B.	N under '+'		
C.	P under '.'	D.	none of these		
992) Ov	Over the field of real numbers,				
A.	Z is a vector space	B.	N is a vector space		
C.	E is a vector space	D.	none of these		
993) A	A group (G,*)				
A.	Is not closed under '*'	В.	May not be closed under '*'		
C.	Is closed under '*'	D.	none of these		
994) Th	The set G is a group under '+' for				
A.	G = N	B.	G = W		
C.	G = Z	D.	none of these		
95) A	A set which is a group under '+',				
A.	is a group under "."	B.	is not a group under "."		
C.	May not be a group under "."	D.	none of these		
996) A	cyclic group		<u> </u>	C	

	A.	Is not abelian group	B.	May not be an abelian group	
	C.	Is an abelian group	D.	none of these	
997)	7) A group generated by one of its elements, is called				В
	A.	An abelian group	B.	A cyclic group	
	C.	A filed	D.	none of these	
998)	Which one is not true				D
	A.	A field is a ring	B.	A ring may not be a field	
	C.	A ring is a group under '+'	D.	none of these	
999)	The	The set $\{-3n : n \in Z\}$ is an abelian group under			
	A.	Addition	B.	Subtraction	
	C.	Multiplication	D.	none of these	
1000	A monoid is always				С
	A.	a group	B.	a commutative group	
	C.	Groupoid	D.	none of these	