Department of Mathematics and Statistics
 MCQs Bank of entry test for the Mphil (Mathematics)

8)	$\int \ln x d x=$		D
	A. $\frac{1}{x}$	B. $\frac{1}{\ln x}$	
	C. $x \ln x+x+C$	D. none of these	
9)	$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=C+f, f=$		C
	A. $\cos ^{-1}\left(\frac{x}{a}\right)$	B. $\left\lvert\, \frac{1}{a} \sin ^{-1}\left(\frac{x}{a}\right)\right.$	
	$\text { C. } \sin ^{-1}\left(\frac{x}{a}\right)$	D. none of these	
10)	If $y=\frac{x^{2}}{1+x}, \frac{d y}{d x}=$		C
	A. $\frac{\frac{x^{2}-2 x}{(x+1)^{2}}}{}$	B. $x-1+\frac{1}{x+1}$	
	C. $\frac{x^{2}+2 x}{(x+1)^{2}}$	D. none of these	
11)	$\int_{0}^{3} \frac{1}{\sqrt{4-t}} d t=$		A
	$\begin{array}{l\|l} \hline \text { A. } & 2 \\ \hline \text { C. } & 1 \end{array}$	$\text { B. } 0$	
		D. none of these	
12)	$\int_{-1}^{0} \sqrt{3 u+4} d u=$		A
	A. $\frac{14}{9}$	B. $-\frac{14}{9}$	
	C. $\frac{14}{3}$	D. none of these	
13)	$\int_{0}^{1} e^{-x} d x=$		C
	$\text { A. } 1+\frac{1}{e}$	B. 0	
	C. $1-\frac{1}{e}$	D. none of these	
14)	$\int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta=$		A
	A. $\frac{2}{3}$	B. $-\frac{2}{3}$	
	C. 0	D. none of these	
	$\int_{1}^{e} \frac{\ln x}{x} d x=$		D

22) If D is the region above the x-axis and within a circle centered at the origin of radius 2 ,
$\iint_{D}\left(x^{2}+y^{2}\right) d x d y=$
A. 2π
B. π
C. 4π
D. none of these
23)
$\lim \frac{4-x^{2}}{x^{2}-1}=$
A. 1
B. 1
C. ∞
D. none of these
24) $\lim _{x \rightarrow 0} \frac{x}{x}=$
A. 0
B. -3
C. undefined
D. none of these
25) $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}=$
A. 1
B. -3
C. 0
D. none of these
26) $\frac{5 x-4}{x^{2}-x-2}=$

A.	$\frac{2}{x-2}-\frac{3}{x+1}$
C.	$\frac{2}{x+2}+\frac{3}{x-1}$

B. $-\frac{2}{x-2}+\frac{3}{x+1}$
D. none of these
D.
27) If $\frac{3 x+11}{x^{2}-x-6}=\frac{A}{x-3}+\frac{B}{x+2}, A=$
A. 4
B. -1
C. -4
D. none of these
28) If $\frac{3 x+11}{x^{2}-x-6}=\frac{A}{x-3}+\frac{B}{x+2}, B=$
A. 1
B. -4
C. -1
D. none of these
29) If derivative of $f(x)+C$ is $-\frac{1}{x^{2}}, f(x)=$

A.	$\frac{1}{x}$
C.	$-\ln x^{2}$

B. $-\frac{1}{x}$
D. none of these
30) Derivative of 2^{-x} with respect to x, is
$\rightarrow \infty x^{2}-1$
$x_{x} x^{2}-4$

39)	$\int_{1}^{2} \frac{3 x-1}{3 x} d x=$		C
	A. $1-\frac{\ln 3}{2}$	B. $1+\frac{\ln 2}{3}$	
	C. $1-\frac{\ln 2}{3}$	D. none of these	
40)	$\int_{0}^{3} \frac{1}{\sqrt{4+t}} d t=$		D
	A. 1	B. 0	
	C. -2	D. none of these	
41)	$\int_{-1}^{0} \sqrt{3 u+4} d u=$		C
	A. $\frac{14}{3}$	B. $-\frac{14}{9}$	
	$\text { C. } \frac{14}{9}$	D. none of these	
42)	$\int_{0}^{\sqrt{3}} \frac{x}{\sqrt{4-x^{2}}} d x=$		B
	A. -1	B. 1	
	C. 0	D. none of these	
43)	$\int_{0}^{1}(2 t-1)^{3} d t=$		B
	A. -1	B. 0	
	C. 1	D. none of these	
44)	$\int_{4}^{9} \frac{2+x}{2 \sqrt{x}} d x=$		A
	A. $\frac{25}{3}$	B. $\frac{5}{3}$	
	$\text { C. } \frac{25}{9}$	D. none of these	
45)	$\int_{-3}^{3} \frac{1}{9+x^{2}} d x=$		C
	A. $-\frac{\pi}{6}$	B. 0	
	$\text { C. } \left\lvert\, \frac{\pi}{6}\right.$	D. none of these	
46)	$\int_{0}^{1} e^{-x} d x=$		D
	A. 0	B. -1	
	C. 1	D. none of these	

110) If x_{0} is an element of a metric space (X, d) and $r>0,\left\{x \in X: d\left(x, x_{0}\right) \neq r\right\}=$
A. $X-B\left(x_{0} ; r\right)$
B. $X-\bar{B}\left(x_{0} ; r\right)$
C. $X \cup S\left(x_{0} ; r\right)$
D. none of these
111)

The limit of the sequence $\left(\frac{n^{2}-3 n+1}{2 n^{2}+3 n-1}\right)_{n=1}^{\infty}$ is

A.	$\frac{-1}{2}$
C.	-1

B. 0
D. none of these
112) If a relation f is such that $a=b \Rightarrow f(a)=f(b)$ then f is
A. a function
B. onto
C. one to one
D. none of these
113) If a function f is such that $f(a)=f(b) \Rightarrow a=b$ then f is
A. a function
B. onto
C. one to one
D. none of these
114) If $f: A \rightarrow B$ is a function, $\operatorname{Dom}(f)$
A. $=A$
B. $\subset A$
C. $\supset A$
D. none of these
115) If $f: A \rightarrow B$ is a function, Range (f)
A. $=B$
B. $\subseteq B$
C. $\subseteq A$
D. none of these
116) If $f: A \rightarrow B$ is a function and $a \neq b \Rightarrow f(a) \neq f(b), f$ is
A. one to one
B. onto
C. bijection
D. none of these
117) If $f: A \rightarrow B$ is a function such that different elements of A have different images in B, f is said to be
A. bijection
B. onto
C. one to one
D. none of these
118) If $f: A \rightarrow B$ is a function such that $\operatorname{Range}(f) \subset B, f$ is said to be
A. into
B. onto
C. bijection
D. none of these
119) If $f: A \rightarrow B$ is a function such that $\operatorname{Range}(f)=B, f$ is said to be
A. into
B. onto
C. bijection
D. none of these
120)

If $f: A \rightarrow B$ is a function and such that $A_{1} \subseteq A$, the function $f_{1}: A_{1} \rightarrow B$ defined by
$f_{1}(a)=f(a)$ for all $a \in A_{1}$, is called
A. extension of f on A_{1}
B. subset of A
C. restriction of f on A_{1}
D. none of these
121) For two non-empty sets A and B, the set $\{(a, b): a \in A, b \in B\}$ is called Cartesian product of
A. A and B
B. B and A
C. $A B$
D. none of these
122) For two non-empty sets A and B, the Cartesian product of A and B is denoted by
A. $A B$
B. $B \times A$
C. $A \times B$
D. none of these
123) If $A \times B$ is the Cartesian product of A and $B,|A \times B|$ is
A. $>|A| B \mid$
B. $=|A| B \mid$
C. $<|A| B \mid$
D. none of these
124) $\sum_{k=0}^{n}\binom{n}{k}=$
A. 2^{-n}
B. 2^{n}
C. $2 n$
D. none of these
125) Integral of $e^{x^{2}}$ w.r.t. x, is

A.	$\frac{e^{x^{2}}}{2 x}$
C.	$x^{2} e^{x^{2}-1}$

B. $2 x e^{x^{2}}$
D. none of these

126) An infinite series	
A. is convergent B. may converge C. is divergent D. none of these	

127) An infinite sequence
B. may converge

	A. is divergent
C. is convergent	
128)	If $a<b, \frac{a+b}{2}$ is

A. lesser than a
B. greater than b
C. equal to $a b$
D. none of these
129) A decreasing sequence
A. is divergent
B. may diverge
C. is convergent
D. none of these
130) If $a<b, a^{2}+b^{2}$ is
A. lesser than $2 a b$
B. greater than $2 a b$

A. $\geq \inf (B)$
B. $\leq \inf (B)$
C. $=\inf (B)$
D. none of these
141) If A and B are two sets such that $A \subseteq B, \operatorname{Sup}(A)$ is
A. $\leq \operatorname{Sup}(B)$
B. $\geq \operatorname{Sup}(B)$
C. $=\operatorname{Sup}(B)$
D. none of these
142) If A and B are two sets such that $A \subseteq B, \operatorname{Sup}(A)$ is
A. finite
B. infinite
C. 0
D. none of these
143) Which of the followings is not true
A. $Z \subset Q$
B. $Q \subset R$
C. $W \subset Z$
D. none of these
144) Domain of the function $f(x)=\frac{1}{\sqrt{4-x^{2}}}$, is the set
A. $[-2,2]$
B. $]-2,2[$
C. $\{2,-2\}$
D. none of these
145)

If $f(x)=\frac{x}{2}-3, f^{-1}(x)=$
A. $\frac{2}{x-6}$
B. $2 x-6$
C. $2 x+6$
D. none of these
146) If $x=10^{y}, y=$

A.	$\frac{1}{\ln (10)}$

B. $\frac{1}{\ln (x)}$
C. e
D. none of these
147) If $|x-3|=3-x$,
A. $x>3$
B. $x=3$
C. $x-3=0$
D. none of these
148) $\ln x$ is undefined for
A. $x>0$
B. $x=10$
C. $x=e$
D. none of these
149) The real line R is a metric space under the metric $d_{0}: R \times R \rightarrow R$ defined as $d_{0}(x, y)=$
A. $|x+y|$
B. $|x-y|$
C. $|x-2 y|$
D. none of these

168) f is said to be increasing function on $] a, b\left[\right.$ if for $\left.x_{1}, x_{2} \in\right] a, b[$
A. $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$
B. $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $x_{2}<x_{1}$
C. $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$
D. none of these
169) f is said to be decreasing function on $] a, b\left[\right.$ if for $\left.x_{1}, x_{2} \in\right] a, b[$
A. $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$
B. $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $x_{2}<x_{1}$
C. $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{2}>x_{1}$
D. none of these
170) A point where first derivative of a function is zero, is called
A. Stationary point
B. Corner point
C. Point of concurrency
D. none of these
171) $f(x)=\sin x$ is
A. An even function
B. A linear function
C. An odd function
D. none of these
172) The maximum value of the function $f(x)=x^{2}-x-2$ is
A. $\frac{9}{4}$

- $\frac{9}{4}$
B. $-\frac{9}{4}$
C. $\frac{9}{2}$
D. none of these
D.

173) $\frac{d}{d x}(\cos x)-\frac{d^{2}}{d x^{2}}(\sin x)=$
A. 0
B. $2 \sin x$
C. $2 \cos x$
D. none of these

$174)$	If $f(x)=x^{3}+2 x+9, f^{\prime \prime}(x)=$	C

A. 0
B. $3 x^{2}$
C. $6 x$
D. none of these
175) $\frac{d}{d x}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2}=$

A.	$1+\frac{1}{x^{2}}$
C.	$\sqrt{1-\frac{1}{x^{2}}}$

B. $1-\frac{1}{x^{2}}$
D. none of these
176) At $x=0$, the function $f(x)=1-x^{3}$ has
A. Maximum value
B. Minimum value
C. Point of inflection
D. none of these
177) If $y=\sin \sqrt{x}, y^{\prime}=$

	A.	$\log \left\|1+\tan \frac{(x+y)}{2}\right\|=y+c$	B.	. $\log \left\|2+\sec \frac{(x+y)}{2}\right\|=x+c$	
	C.	$\log \|1+\tan (x+y)\|=y+c$. none of these	
196)	If $y=a \cos (\log x)+b \sin (\log x)$, then				B
		$x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$	B.	$x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0$	
		$x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$	D. none of these		
197)	If $y=\sin \left(a \sin ^{-1} x\right)$, then				A
		$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+a^{2} y=0$	B.	(1-x $\left.x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-a^{2} y=0$	
		$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-a^{2} y=0$	D. none of these		
198)	The DE of the family of curves $y^{2}=4 a(x+$ is				B
	A.	$y^{2}=4 \frac{d y}{d x}\left(x+\frac{d y}{d x}\right)$	B.	$y^{2}\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}-y^{2}=0$	
	C.	$y^{2} \frac{d y}{d x}+4 y=0$	D. none of these		
199)	Inverse derivative of $\sin \mathrm{x}$ is:				A
	A.	$\frac{1}{\sqrt{1-x^{2}}}$	B.	$\frac{1}{\sqrt{1+x^{2}}}$	
	C.	$\frac{-1}{\sqrt{1-x^{2}}}$	D. none of these		
200)	Inverse derivative of $\cos x$ is:				C
	A.	$\frac{1}{\sqrt{1-x^{2}}}$. $\frac{1}{\sqrt{1+x^{2}}}$	

Discipline:

	C.	$\frac{-1}{\sqrt{1-x^{2}}}$		
201)	If $y=\tan ^{-1} x^{3 / 2}$, then $\frac{d y}{d x}=$			A
	A.	$\frac{3 \sqrt{x}}{2\left(1+x^{3}\right)}$	B.	
	C	$\frac{3 \sqrt{x}}{2\left(1-x^{3}\right)}$	D. none of these	
	The equation of the curves, satisfying the $\operatorname{DE} \frac{d^{2} y}{d x^{2}}\left(x^{2}+1\right)=2 x \frac{d y}{d x}$ passing through the point $(0,1)$ and having the slope of tangent at $x=0$ as 6 is			B
	A.	$y^{2}=2 x^{3}+6 x+1$	B.	
	C.	$y^{2}=x^{3}+6 x+1$	D. none of these	
	A particle, initially at origin moves along x -axis according to the rule $\frac{d x}{d t}=x+4$. The time taken by the particle to traverse a distance of 96 units is:			C
	A.	$\ln 5$	B.	
	C.		D. none of these	
204)	If $y=\cos ^{-1}(\ln x)$, then the value of $\frac{d y}{d x}$ is			B
	A.	$\frac{1}{x \sqrt{1-(\ln x)^{2}}}$	B.	
	C.	$\frac{-1}{x \sqrt{1+(\ln x)^{2}}}$	D. none of these	

205) If $x=2 \ln \cot (t)$ and $y=\tan (t)+\cot (t)$, the value of $\frac{d y}{d x}$ is

A.	$\cot (2 t)$	B.	$\tan (2 t)$
C.	$\cos (2 t)$	D. none of these	

206) Solution of the $\mathrm{DE} \ln \left(\frac{d y}{d x}\right)=a x+b y$ is

| A. $\quad-\frac{1}{b} e^{-b y}=\frac{1}{a} e^{a x}+c$ |
| :--- | :--- |

B. $\frac{1}{b} e^{-b y}=\frac{1}{a} e^{a x}+c$
C. $\quad \frac{1}{b} e^{-b y}=-\frac{1}{a} e^{a x}+c$
D. none of these
207) If the general solution of a differential equation is $(y+c)^{2}=c x$, where c is an arbitrary constant, then the order and degree of differential equation is

A.	1,2
C.	1,3

B. 2,1
D. none of these
208) Solution of $\left(x^{2} \sin ^{3} y-y^{2} \cos x\right) d x+\left(x^{3} \cos y \sin ^{2} y-2 y \sin x\right) d y=0$ is

A.	$\left(x^{3} \sin ^{3} y / 3\right)=c$
C.	$\left(x^{3} \sin ^{3} y / 3\right)=y^{2} \sin x+c$

B. $\quad x^{3} \sin ^{3} y=y^{2} \sin x+c$
D. none of these
209) Solution of $\frac{x d y}{x^{2}+y^{2}}=\left(\frac{y}{x^{2}+y^{2}}-1\right) \mathrm{dx}$ is
A. $\quad x-\tan ^{-1} \frac{y}{x}$
B.
$\tan ^{-1} \frac{y}{x}=c$
C.

$$
x \tan ^{-1} \frac{y}{x}=c
$$

D. none of these
210) Solution of $\left(y+x^{\sqrt{x y}}(x+y)\right) d x+\left(y^{\sqrt{x y}}(x+y)-x\right) d y=0$ is
A.

$$
x^{2}+y^{2}=2 \tan ^{-1} \sqrt{\frac{y}{x}+c}
$$

B.
$x^{2}+y^{2}=4 \tan ^{-1} \sqrt{\frac{y}{x}+c}$

	C.	$x^{2}+y^{2}=\tan ^{-1} \sqrt{\frac{y}{x}+c}$		none of these	
211)	Solution of the $\mathrm{DE} \frac{d y}{d x}+2 x y=y$ is				A
	A.	$y=c e^{x-x^{2}}$	B.	$y=c e^{x^{2}}-x$	
	C.	$y=c e^{x}$		none of these	
212)	Solution of the differential equation $\frac{d y}{d x}=\sin (x+y)+\cos (x+y)$, is				D
	A.	$\log \left\|1+\tan \frac{(x+y)}{2}\right\|=y+c$		$\log \left\|2+\sec \frac{(x+y)}{2}\right\|=x+c$	
	C.	$\log \|1+\tan (x+y)\|=y+c$	D. n	none of these	
213)	The Blasius equation $\frac{d^{3} f}{d \eta^{3}}+\frac{f}{2} \frac{d^{2} f}{d \eta^{2}}=0$ is a				B
	A.	Second order non linear differential equation		Third order non linear ordinary differential equation	
	C.	Third order linear ordinary differential equation		none of these	
214)	The general solution of $\mathrm{DE} \frac{d y}{d x}=\cos (x+y)$ with c as a constant is				D
	A.	$y+\sin (x+y)=x+c$		$\tan \left(\frac{x+y}{2}\right)=y+c$	
	C.	$\cos \left(\frac{x+y}{2}\right)=x+c$		none of these	
215)	The solution of the initial value problem $\frac{d y}{d x}=-2 x y ; y(0)=2$ is				B
	A.	$1+e^{-x^{2}}$	B.	$2 e^{-x^{2}}$	

	C.	$1+e^{x^{2}}$	D.	these	
216)	The solution of ODE $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$ is				A
	A.	$y=c_{1} e^{-3 x}+c_{2} e^{2 x}$	B.	$y=c_{1} e^{3 x}+c_{2} e^{2 x}$	
	C.	$y=c_{1} e^{3 x}+c_{2} e^{-2 x}$	D. none of these		
217)	The solution for the differential equation $\frac{d y}{d x}=x^{2} y$ with two condition that $y=1$ at $x=0$				C
	A.	$2 e^{\frac{x^{2}}{2}}$	B.	$3 e^{\frac{x}{2}}$	
	C.	$e^{\frac{x^{2}}{2}}$	D. none of these		
	The solution of $\frac{d y}{d x}=-\frac{x}{y}$ with initial condition $y(1)=\sqrt{3}$ is				C
	A.	$x^{3}+y^{3}=4$	B.	$y=4 a x$	
	C.	$x^{2}+y^{2}=4$	D. none of these		
	Which of these is the solution of differential equation $\frac{d x}{d t}+3 x=0$				A
	A.	$2 e^{-3 t}$	B.	$e^{-3 t}$	
	C.	$2 e^{2 t}$	D. none of these		
	The general solution of $\mathrm{DE} \frac{d y}{d x}=\frac{y}{x}$ is				B
	A.	$\log y=k x$	B.	$y=k x$	
	C.	$y=\frac{k}{x}$	D.	these	

221)	Integrating factor of $\mathrm{DE} \cos \frac{d y}{d x}+y \sin x=1$ is				B
	A.	$\sin x$	B.	$\sec x$	
	C.	$\tan x$	D. none of these		
222)	If $2 x y d x+P(x, y) d y=0$ is exact then $P(x, y)$ is				D
	A.	$x-y$	B.	$x+y$	
	C.	$x-y^{2}$	D. none of these		
223)	A differential equation of first degree				B
	A	Is of first order	B.	May or may not be linear	
	C.	Is always linear	D. none of these		
224)	A general solution of an $n^{\text {th }}$ order differential equation contains				B
	A.	$n-1$ arbitrary constants	B.	n arbitrary constants	
	C.	$n+1$ arbitrary constants	D. none of these		
225)	The differential equation $M d x+N d y=0$ is defined as an exact differential equation of				D
	$\mathrm{A} .$	$\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$	B.	$\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$	
		$\frac{\partial M}{\partial y}=-\frac{\partial N}{\partial x}$	D. none of these		
226)	The order of the differential equation $\frac{\partial^{2} y}{\partial x^{2}}+y^{2}=x+e^{x}$ is				A
	A. 2		B.		
	C. 0		D.	these	
227)	''Infinitely many differential equation have the same integrating factor''. This statement is				C

257) The partial differential equation $x y \frac{\partial z}{\partial x}=5 \frac{\partial^{2} z}{\partial y^{2}}$ is
A. Elliptic
B. Parabolic
C. Hyperbolic
D. none of these
258) The following is true for the following partial differential equation under non linear mechanics known as the Kortewege-de-vfies equation $\frac{\partial w}{\partial t}+\frac{\partial^{3} w}{\partial x^{3}}-6 w \frac{\partial w}{\partial x}=0$
A. Linear, $3^{\text {rd }}$ order
B. Non-linear $3^{\text {rd }}$ order
C. Linear first order
D. none of these
259) Solve $\frac{\partial u}{\partial x}=6 \frac{\partial u}{\partial t}+u$ using separation method of variable if $u(x, 0)=10 e^{-x}, u=$
A. $10 e^{-x} e^{-\frac{t}{3}}$
B. $10 e^{x} e^{-\frac{t}{3}}$
C. $10 e^{\frac{x}{3}} e^{-t}$
D. none of these
260) While solving the partial differential equation by separable method we equate the ratio to constant which?

A.	Can be positive or negative integer or zero	B.	Can be positive or negative rational number or zero
C.	Must be positive integer	D. none of these	

261) When solving a 1-dimensional heat equation using a variable separable method we get the solution
A. k is positive
B. k is 0
C. k is negative
D. none of these
262) $f(x, y)=\sin (x y)+x^{2} \ln (y)$. Then $f_{x y}$ at $\left(0, \frac{\pi}{2}\right)$ is
A. 33
B. 0
C. 3
D. none of these
263) $f(x, y)=x^{2}+y^{3} ; x=t^{2}+t^{3} ; y=t^{3}+t^{9}$. Then $\frac{d f}{d t}$ at $t=1$ is
A. 164
B. -164
C. 0
D. none of these
264) DE for $y=A \cos \alpha x+B \sin \alpha x$, where A and B are arbitrary constants is
A. $\frac{d^{2} y}{d x^{2}}+\alpha y=0$
B. $\frac{d^{2} y}{d x^{2}}-\alpha y=0$

337)Let $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$ generate the vector space $\mathrm{V}(\mathrm{F})$ then for any vector $\mathrm{v} \in V(F)$, the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$ is $\ldots \ldots$ and generate $\mathrm{V}(\mathrm{F})$.	B
A. Linearly independent ${ }^{\text {B. Linearly dependent }}$	
C. Basis D. None of these	
338)The number of elements in the basis of a vector space V(F) is called Vector space of V(F)	C
A. Linearly independent B. Basis	
C. Dimension D. None of these	
339) $\mathrm{V}(\mathrm{R})=\mathrm{C}$ the set of all complex numbers, $\{1, \mathrm{i}\}$ is generate $\mathrm{V}(\mathrm{R}) \operatorname{Dim} \mathrm{V}(\mathrm{R})=2$	C
A. Dimension B. Linearly dependent	
C. Linearly independent D. None of these	
340)If C(C) is a vector space over the field of Complex Number ,then the Basis and dimension is	C
A. $\operatorname{Dim}(\mathrm{C})=1$, Basis $=2 \quad$ B. $\operatorname{Dim}(\mathrm{C})=2$, Basis $=1$	
C. $\operatorname{Dim}(\mathrm{C})=1$, Basis $=1 \quad$ D. None of these	
341)A linearly independent set is always a part of of V(F)	A
A. Basis B. Subspace	
C. Vector Space D. None of these	
342)[f $V=M_{n \times n}(F)$, Let $T: M_{n \times n} \rightarrow M_{n \times n}$ be defined by $T(A)=A^{t}$. T is a	A
A. Linear Transformation B. Range of Linear of Transformation	
C. Not a Linear Transformation D. None of these	
343) $T: R^{2} \rightarrow R^{2}, T(x, y)=(x+2, y+1)$ then T is	C
A. Linear Transformation ${ }^{\text {B }}$ B. Range of Linear of Transformation	
C. Not a Linear Transformation D. None of these	
344)Linear Transformation is called if it is then it is called Monomorphism	A
A. One -One B. Onto	
C. One-one and onto D. None of these	
345)Linear Transformation is called if it is then it is called Isomorphism	C
A. One -One B. Onto	
C. One-one and onto D. None of these	
346) Let $T: V_{1} \rightarrow V_{2}$ be a linear transformation then image of T is defined as $R(T)=\left\{T\left(V_{1} \mid\right) v_{1}\right.$ $\left.\in V_{1}\right\}$ is called	B
A. Linear Transformation \quad B. Range of Linear of Transformation	
C. Not a Linear Transformation D. None of these	
347)Let $V(F)$ be a vector if $\operatorname{dim} n$.then	C
A. $V_{n}(F)=F \quad$ B. $V_{n}(F)=F^{n-1}$	
C. $V_{n}(F)=F^{n}$ D. None of these	
348) Let $T: V_{1}$ $\rightarrow V_{2}$ be a linear transformation between two vector space $V_{1}(F)$ and $V_{2}(F)$, where $V_{1}(F)$ a have dimension then T is $(1-1)$ iff T is	B
A. One -One B. Onto	
C. One-one and onto D. None of these	
349)Let T: $V_{1} \rightarrow V_{2}$ be a linear transformation Then ker T is subspace of	B
A. $V_{2}(F)$ B. $V_{1}(F)$	
C. $\mathrm{R}(\mathrm{T}) \quad$ D. None of these	
350)Let $T: V_{1} \rightarrow V_{2}$ be a linear transformation Then $\mathrm{R}(T)$ is subspace of $\ldots .$. Where $\mathrm{R}(\mathrm{T})=\mathrm{Ker}$ of T	A
A. $V_{2}(F)$ B. $V_{1}(F)$	
$\mathrm{C} . \mathrm{R}(\mathrm{T}) \quad$ D. None of these	

351)Let $T: V_{1} \rightarrow V_{2}$ be a linear transformation Then $\mathrm{T} \ldots \ldots$....is Iff $N(T)=\left\{0_{1}\right\} \ldots$.	A
A. One -One B. Onto	
C. One-one and onto D. None of these	
352)Let $T: V_{1} \rightarrow V_{2}$ be a linear transformation then	C
A. $\quad \operatorname{Dim} V_{1}(F)=\operatorname{Nullity}(T) \quad$ B. $\quad \operatorname{Dim} V_{1}(F)=\operatorname{Nullity}(T)+\operatorname{Range}(T)$	
C. $\operatorname{Dim} V_{1}(F)=\operatorname{Nullity}(T)+\operatorname{Rank}(T) \quad$ D. None of these	
353)Let $T: V \rightarrow V$ is $\ldots \ldots .$. Iff T^{-1} exist such that $T T^{-1}=I$	B
$\begin{array}{ll}\text { A. Singular } & \text { B. Non-singular }\end{array}$	
C. Bijective D. None of these	
354)Let $T: V \rightarrow V$ be a linear and Dim $V=n$ then T can not more then eigen values	B
A. $\mathrm{n}+1$ B. n	
C. $\mathrm{n}-1$ D. None of these	
355)An $n \times n$ matrix A is \ldots. iff A has n real and distinct eigen values	C
A. Similar B. Orthogonal	
C. Diagonalizable D. None of these	
356) Is $G=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$ a group of mod8	A
A. Yes B. No	
C. Basis D. None of these	
357)An element $a \in G$ is said and congugate to $b \in G$, if there exist an element $g \in G$ s.t. $a=$ $g^{-1} a g$ is called	A
A. Conjugate of an element in a group ${ }^{\text {a }}$ B. Self-conjugate of an element in a group	
C. Equivalence Relation D. None of these	
358)How many conjugate classes are there I symmetric group S_{3}	C
A. 1 B. 2	
C. 3 D. None of these	
359)Every Group of prime order is a	A
A. Cyclic B. Generator	
C. Center of the group D. None of these	
360) $(Q+)$ is	B
A. A cyclic group B. Not cyclic group	
C. Abelian group D. None of these	
361)A cyclic of length 2 is called	C
A. Permutation B. Combination	
C. Transposition D. None of these	
362)Each permutation can be expressed as product of	B
A. Not Cyclic Permutation B. Cyclic Permutation	
C. Transposition D. None of these	
363)If group is abelian, then what will be $N_{G}(X)$?	A
$\begin{array}{ll}\text { A. } N_{G}(X)=G & \text { B. } N_{G}(X)=X\end{array}$	
C. $N_{G}(X)=N \quad$ D. None of these	
364)Let $\emptyset:(Z,+) \rightarrow(Z,+)$ defined by $\emptyset(n)=2 n \forall n \in Z=$ set of integers is example of	C
A. Isomorphism B. Epimorphism	
C. Monomorphism D. None of these	
365)Let $\emptyset:(Z,+) \rightarrow(G,)=.\{ \pm 1, \pm i\}$ defined by $\emptyset(n)=i^{n} \forall n \in Z=$ set of integers is example of	B
A. Isomorphism B. Epimorphism	
C. Monomorphism D. None of these	

366)Let $\emptyset:(Z,+) \rightarrow(E,+)=$ defined by $\emptyset(n)=2 n \forall n \in Z=$ set of integers and $E=$ Set of even integer is example of	A
A. Isomorphism B. Epimorphism	
C. Monomorphism D. None of these	
367)Every Characteristic subgroup is a	C
A. Subgroup B. Invariant	
C. Normal Subgroup D. None of these	
368)When are the subgroups of group its normal subgroup?	B
A. Left coset \neq Right Coset \quad B. Left coset $=$ Right Coset	
C. Left coset \times Right Coset D. None of these	
369)If p is prim divisor of a finite group G having order n then G has an element with order p is called	C
A. Sylow $2^{\text {nd }}$ Theorem ${ }^{\text {a }}$ B. Lagrange's Theorem	
C. Cauchy $2^{\text {nd }}$ order Theorem D. None of these	
370)Intersection of two subrings be an	B
A. Quotient Set B. Empty Set	
C. Integer Set D. None of these	
371)Every ideal is a	C
A. Maximal B. Ring	
C. Subring D. None of these	
372) $R=M_{2 \times 2}$ be the ring of 2×2 matirces, $R=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), I_{1}=\left(\begin{array}{ll}r_{1} & 0 \\ r_{2} & 0\end{array}\right), r_{1}, r_{2} \in R$ is	B
A. Right Ideal B. Left Ideal	
C. Sided ideal D. None of these	
$\left.{ }^{373}\right)_{R}=M_{2 \times 2}$ be the ring of 2×2 matirces, $R=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), I_{1}=\left(\begin{array}{cc}r_{1} & r_{2} \\ 0 & 0\end{array}\right), r_{1}, r_{2} \in R$ is	A
A. Right Ideal B. Left Ideal	
C. Sided ideal D. None of these	
374)Irrational number is a	B
A. Ring B. Not Ring	
C. Ideal ring D. None of these	
375)A ring I which the non-zero element form a multiplication group is called	C
A. Ring B. Ideal Ring	
C. Division Ring D. None of these	
376)The dimension of the null space is called	D
A. Ring B. Ideal Ring	
C. Division Ring D. None of these	
377)Subspace of a Discrete space is	C
A. Topological Space B. Indiscrete	
C. Discrete D. None of these	
378)In particular, the open intervals on the real lines are base for thetopology.	C
A. Discrete B. Indiscrete	
C. Usual D. None of these	
379)Every Compact subsets R^{n} is	A
A. Closed and bounded B. Closed and Continuous	
C. Open and interior D. None of these	
380)The continouse image of a conected space is	C
A. Discrete B. Disconnected	

C. Connected
D. None of these

381)	Which of the following is the degree of the differential equation $\frac{d^{2} x}{d t^{2}}+2 x^{3}=0$?			C
	A.	0	1	
	C.	2	3	
382)	The order and degree of differential equation $\frac{d^{3} x}{d t^{3}}+4 \sqrt{\left(\frac{d y}{d x}\right)^{3}+y^{2}}=0$ are respectively			A
	A.	3 and 2	2 and 3	
	C.	3 and 3	3 and 1	
383)	The differential equation $2 \frac{d y}{d x}+x^{2} y=2 x+3$ is			A
	A.	Linear	Non-Linear	
	C.	Linear with fixed constants	Undetermined to be linear or non-linear	
384)	Which of the following is the solution of the differential equation $\frac{d y}{d t}=5 y ; \quad y(0)=2$			D
	A.	$y=5 e^{-5 t}$	$y=2 e^{-10}$	
	C.	$y=3 e^{-5 t}$	$y=2 e^{5 t}$	
385)	The order and degree of differential equation $3 \frac{d^{2} y}{d t^{2}}+4\left(\frac{d y}{d x}\right)^{3}+y^{4}=e^{-t}$ are respectively			A
	A.	2 and 1	1 and 2	
	C.	4 and 3	2 and 3	
386)	A differential equation is said to be ordinary differential equation if it has			C
	A.	one dependent variable	More than one dependent variables	
	C.	one independent variable	More than one dependent variables	
387)	Which of the following is the trivial solution of a differential equation.			A
	A.	$y \equiv 0$	$y \propto 0$	
	C.	$y \neq 0$	$y \approx 0$	
388)	The differential equation $x^{2} \frac{d y}{d x}-2 x y=\sin x$ is defined for			D
	A.	$(0, \infty)$	$(0,1) \cup(1, \infty)$	
	C.	$(-\infty, 0) \cup(1, \infty)$	$(-\infty, \infty)$	
389)	The differential equation $y^{\prime \prime}+\frac{1}{x} y=\frac{1}{x^{2}-4}$ is defined for			D
	A.	$(0, \infty)$	$(0,1) \cup(1, \infty)$	
	C.	$(-\infty, \infty)$	All real line except 0,2 and -2	
390)	Which of the following is the solution of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$			C
	A.	$y=A x+B$	$y=A x^{2}+B x$	
	C.	$y=A x+\frac{B}{x}$	$y=\frac{A}{x}+B x$	
391)	The solution of a differential equation which is not obtained from the general solution is known as			B

416)	A differential equation $\frac{d y}{d x}+\frac{2}{x} y=9$ is				A
		Linear	B.	Non-linear	
		Homogenous		None of these	
417)	A differential equation $\frac{d y}{d x}+y=5 x$ is				A
		Linear		Non-linear	
		Homogenous		None of these	
418)	A differential equation $\frac{d y}{d x}+3 x y=\sin x$ is				A
		Linear		Non-linear	
		Homogenous		None of these	
419)	A differential equation $\frac{d y}{d x}+3 x y^{2}=\sin x$ is				B
		Linear		Non-linear	
	C.	Homogenous		None of these	
420)	What is the solution of a linear differential equation $\frac{d y}{d x}+2 x y=2 e^{-x^{2}}$ with integrating factor $e^{x^{2}}$?				D
	A.	$y=(2 x+c) e^{x}$	B.	$y=\left(x^{2}+c\right) e^{-x^{2}}$	
	C.	$y=c e^{-x^{2}}$		$y=(2 x+c) e^{-x^{2}}$	
421)	A differential equation $\frac{d x}{d y}+\frac{2}{y} x=10 y^{2}$ is				A
	A.	Linear	B.	Non-linear	
		Homogenous	D.	None of these	
422)	A differential equation $x \frac{d y}{d x}+y=x y^{3}$ is				B
		Linear		Bernouli	
		Homogenous		None of these	
423)	A differential equation $\frac{d y}{d x}=\frac{1}{x} y^{2}+\frac{1}{x} y-\frac{2}{x}$ is				D
		Linear		Bernouli	
	C. Homogenous			Riccati	
424)	Which of the following is the solution of $\frac{e^{y}}{1+e^{y}} d y=\frac{2 x}{1+x^{2}} d x$				A
	A.	$1+e^{y}=C\left(1+x^{2}\right)$		$y=C\left(1+x^{2}\right)$	
	C.	$e^{y}=C\left(1+x^{2}\right)$		None of these	
425)	The solution of an exact differential equation $\left(3 x^{2}+y \cos x\right) d x+\left(\sin x-4 y^{3}\right) d y=0$ is				
	A.	$x^{3}+y \sin x-y^{4}=C$		$y \sin x-y^{4}=C$	A
	C.	$x^{3}+y \sin x-y^{4}=y$	D.	None of these	
426)	What should be I.F of a non-exact differential equation $\left(6 x^{2}+4 y^{3}+12 y\right) d x+\left(3 x+3 x y^{2}\right) d y=0$ to be an exact?				D
	A.	$1 / x$	B.	e^{x}	
	C.	x	D.	x^{3}	
427)	What should be I.F of a non-exact differential equation $\left(2 x^{2} y^{2}+e^{x} y\right) d x-\left(e^{x}+y^{3}\right) d y=0$ to be an exact?				
	A.	1/y	B.	y^{2}	D
	C.	1/x	D.	$1 / y^{2}$	

428)	What should be I.F of a linear differential equation $\frac{d x}{d y}+\frac{1}{y \ln y} x=\frac{1}{y}$?			B
	A.	$1 / \mathrm{y}$	$\ln y$	
	C.	$1 / x$	$1 / y^{2}$	
429)	What will be particular solution if general solution of an ODE is $y=\frac{1}{4}+C e^{-x^{4}}$ using $y(0)=1$?			A
	A.	$y=\frac{1}{4}-\frac{5}{4} e^{-x^{4}}$	$y=\frac{1}{4}+5 e^{-x^{4}}$	
	C.	$y=4-5 e^{-x^{4}}$	None of these	
430)	Determine the order and degree of the differential equation $2 x \frac{d^{4} y}{d x^{4}}+5 x^{2}\left(\frac{d y}{d x}\right)^{3}-x y=0$.			A
	A.	Fourth order first degree	Fourth order third degree	
	C.	First order first degree	Third order fourth degree	
431)	Which of the following is the exact differential equation?			C
	A.	$\left(x^{2}+1\right) d x-x y d y=0$	$x d y+(3 x-2 y) d x=0$	
	C.	$2 x y d x+\left(2+x^{2}\right) d y=0$	$x^{2} y d y-y d x=0$	
432)	Which of the following is the variable separable equation?			C
	A.	$\left(x+x^{2} y\right) d y=\left(2 x+x y^{2}\right) d x$	$(x+y) d x-2 y d y=0$	
	C.	$2 y d x=\left(x^{2}+1\right) d y$	$y^{2} d x+(2 x-3 y) d y=0$	
433)	The equation $y^{2}=c x$ is a general solution of			D
	A.	$\frac{d y}{d x}=\frac{2 y}{x}$	$\frac{d y}{d x}=\frac{2 x}{y}$	
	C.	$\frac{d y}{d x}=\frac{x}{2 y}$	$\frac{d y}{d x}=\frac{y}{2 x}$	
434)	If $d y=x^{2} d x$ then what is the equation of y in terms of x if the curve passes through $(1,1)$?			B
	A.	$x^{2}-3 y+3=0$	$x^{3}-3 y+2=0$	
	C.	$x^{3}+3 y^{2}+2=0$	$2 y+x^{3}+2=0$	
435)	What is the differential equation of the family of lines passing through origin?			B
	A.	$y d x-x d y=0$	$x d y-y d x=0$	
	C.	$x d x+y d y=0$	$y d x+x d y=0$	
436)	What is the differential equation of the family of parabolas having their vertices at the origin and their foci on the x -axis?			A
	A.	$2 x d y-y d x=0$	$x d y+y d x=0$	
	C.	$2 y d x-x d y=0$	$\frac{d y}{d x}-x=0$	
437)	What will be the particular integral of the differential equation $\left(D^{2}+4\right) y=\sin 3 x$?			D
	A.	$\sin 3 x$	$-\cos 3 x$	
	C.	$\frac{-\cos 3 x}{5}$	$\frac{-\sin 3 x}{5}$	
438)	What will be the particular integral of the differential equation $\left(D^{2}+1\right) y=\sin 2 x$?			D
	A.	$\sin 2 x$	$-\cos 2 x$	
	C.	$\frac{-\cos 2 x}{5}$	$\frac{\sin 2 x}{9}$	
439)	What will be the particular integral of the differential equation $\left(D^{2}+2 D+3\right) y=\cos 2 x$?			C
	A.	$\sin 2 x-\cos 2 x$	$-\cos 2 x+17 \sin 2 x$	

	A.	$A \cos x$	B.	$(A x+B) e^{3 x}$	
	C.	$\left(A x^{2}+B x+C\right) e^{3 x}$	D.	None of these	
454)	What will be form of y_{p} while solving $a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=e^{3 x} \sin 4 x$ by UC method?				C
	A.	$A \cos 4 x e^{3 x}$	B.	$(A x+B) e^{3 x}$	
	C.	$(A \cos 4 x+B \sin 4 x) e^{3 x}$	D.	None of these	
455)	What will be form of y_{p} while solving $a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=5 x^{2} \sin 4 x$ by UC method?				C
	A.	$A \cos 4 x e^{3 x}$	B.	$(A x+B) e^{3 x}$	
	C.	$\left(A x^{2}+B x+C\right) \cos 4 x+(C$	D.	None of these	
456)	What is y_{2} if $y_{1}=x^{2}$ is a solution of $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$?				B
	A.	$A \cos 4 x e^{3 x}$	B.	$x^{2} \ln x$	
	C.	$4 x^{3}$	D.	None of these	
457)	What is y_{2} if $y_{1}=e^{2 x}$ is a solution of $y^{\prime \prime}-4 y^{\prime}+4 y=0$?				A
	A.	$x e^{2 x}$	B.	$x^{2} \ln x$	
	C.	$4 x^{3}$	D.	None of these	
458)	What is y_{2} if $y_{1}=\cos 4 x$ is a solution of $y^{\prime \prime}+16 y=0$?				A
	A.	$\sin 4 x$	B.	$x^{2} \ln x$	
	C.	$4 x^{3}$	D.	None of these	
459)	What is y_{2} if $y_{1}=\cosh x$ is a solution of $y^{\prime \prime}-y=0$?				C
	A.	$\sin 4 x$	B.	$x^{2} \ln x$	
	C.	$\sinh x$	D.	None of these	
460)	What is y_{2} if $y_{1}=\ln x$ is a solution of $x y^{\prime \prime}+y^{\prime}=0$?				D
	A.	$\sin 4 x$	B.	$x^{2} \ln x$	
	C.	$\sinh x$	D.	1	
461)	The partial differential equation $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}+u \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}$ is a				D
		Linear equation of order 2	B.	Non-linear equation of order 1	
	C.	Linear equation of order 1	D.	Non-linear equation of order 2	
462)	The order of the differential equation $\left(\frac{d^{2} y}{d t^{2}}\right)+\left(\frac{d y}{d t}\right)^{3}+y^{4}=e^{-t}$ is				B
		1		2	
		3	D.	4	
463)	The differential equation $\frac{d^{2} y}{d x^{2}}+16 \mathrm{y}=0$ for $\mathrm{y}(\mathrm{x})$ with two boundary conditions $\frac{d y}{d x}(x=0)=1$ and $\frac{d y}{d x}\left(\mathrm{x}=\frac{\pi}{2}\right)=-1$ has				A
		No solution	B.	Exactly one solution	
	C.	Exactly two solutions	D.	Infinitely many solutions	
464) A differential equation is considered to be ordinary if it has					C
465)	A.	one dependent variable	B.	more than one dependent variable	
466)	C.	one independent variable	D.	more than one independent variable	
467)	PDE has independent variable				D
		0	B.	1	
	C.	Less than 1	D.	More than 1	
468)	In homogeneous first order linear constant coefficient ordinary DE is				C
		$\frac{\partial u}{\partial x}=0$	B.	$c u+x^{2}=0$	
		$\frac{\partial u}{\partial x}=\mathrm{cu}+x^{2}$	D.	$\frac{\partial u}{\partial x}=\frac{c}{u}+x^{2}$	
469)	The P.D.E $\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}=f(x, y)$; is known as				A

Discipline:

Discipline:

Discipline:

	C.	$y=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{-3 x}$	D.	None of these		
527)	The solution of $\left(D^{3}-D^{2}+D-1\right) y=0$ is				C	
	A.	$y=c_{1} e^{-x}+c_{2} e^{-3 x}$	B.	$y=\left(c_{1}+c^{2} x\right) e^{x}+c_{3} e^{3 x}$		
	C.	$y=c_{1} e^{x}+c_{2} \sin x+c_{3} \cos x$	D.	None of these		
528)	The solution of ($\left.D^{2}+D-12\right) y=0$ is				A	
	A.	$y=c_{1} e^{3 x}+c_{2} e^{-4 x}$	B.	$y=c_{1} e^{-4 x}+c_{2} e^{-3 x}$		
	C.	$y=c_{1} e^{-x}+c_{2} e^{-2 x}$	D.	None of these		
529)	The solution of $\left(D^{2}+4 D+5\right) y=0$ is				C	
	A.	$y=c_{1} e^{3 x}+c_{2} e^{-4 x}$	B.	$y=c_{1} e^{-4 x}+c_{2} e^{-3 x}$		
	C.	$y=e^{-2 x}\left(c_{1} \sin x+c_{2} \cos x\right)$	D.	None of these		
530)	The solution of $\left(D^{3}-3 D^{2}+4\right) y=0$ is				B	
	A.	$y=c_{1} e^{-x}+c_{2} e^{-3 x}$	B.	$y=\left(c_{1}+c_{2} x\right) e^{2 x}+c_{3} e^{-x}$		
	C.	$y=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{-3 x}$	D.	None of these		
531)	The solution of (9D2 $-12 D+4) y=0$ is				A	
	A.	$y=\left(c_{1}+c_{2} x\right) e^{\frac{2}{3} x}$	B.	$y=\left(c_{1}+c_{2} x\right) e^{2 x}+c_{3} e^{-x}$		
	C.	$y=c_{1} e^{-x}+c_{2} e^{-2 x}+c_{3} e^{-3 x}$	D.	None of these		
532)	The solution of $\left(D^{3}-4 D^{2}+D+6\right) y=0$ is				C	
	A.	$y=\left(c_{1}+c_{2} x\right) e^{\frac{2}{3} x}$	B.	$y=\left(c_{1}+c_{2} x\right) e^{2 x}+c_{3} e^{-x}$		
	C.	$y=c_{1} e^{-x}+c_{2} e^{2 x}+c_{3} e^{3 x}$	D.	None of these		
533)	Which of these is the solution of differential equation $\frac{d x}{d t}+3 x=0$				A	
	A.	$2 e^{-3 t}$	B.	$e^{-3 t}$		
	C.	$2 e^{2 t}$	D.	$e^{-2 t}$		
534)	The general solution of $\mathrm{DE} \frac{d y}{d x}=\frac{y}{x}$ is				B	
	A.	$\log y=\mathrm{kx}$		$y=k x$		
	C.	$\mathrm{y}=\frac{k}{x}$	D.	$y=k \log x$		
535)	Integrating factor of $\mathrm{DE} \cos \frac{d y}{d x}+y \sin x=1$ is				B	
	A.	$\sin \mathrm{x}$	B.	$\sec \mathrm{x}$		
	C.	$\tan \mathrm{x}$	D.	$\cos \mathrm{X}$		
536)	If $2 x y d x+P(x, y) d y=0$ is exact then $P(x, y)$ is				D	
	A.	$\mathrm{x}-\mathrm{y}$	B.	$\mathrm{x}+\mathrm{y}$		
	C.	$x-y^{2}$	D.	$x^{2}+y$		
537)	A differential equation of first degree				B	
	A.	Is of first order	B.	May or may not be linear		
	C.	Always linear	D.	All are false		
538)	A general solution of an $\mathrm{n}^{\text {th }}$ order differential equation contains				B	
	A.	$\mathrm{n}-1$ arbitrary constants	B.	n arbitrary constants		
	C. $\mathrm{n}+1$ arbitrary constants		D.	no constant		
			The order of the differential equation $\frac{\partial^{2} y}{\partial x^{2}}+y^{2}=x+e^{x}$ is			A
	A.	2	B.	3		
		0	D.	1		
539)	''Infinitely many differential equation have the same integrating factor". This statement is				D	
	A.	Never true	B.	May be true		
	C.	Semi true	D.	Always true		

C

D
541) The differential equation $\frac{d y}{d x}+P y=Q y^{n}, n \geq 2$ can be reduced to linear form by substituting
A. $\mathrm{z}=\mathrm{y}^{\mathrm{n}-1}$
B. $\mathrm{z}=\mathrm{y}^{\mathrm{n}}$
D. $\quad \mathrm{x}=\mathrm{y}^{1-\mathrm{n}}$
542) The differential equation $\left(y-2 x^{3}\right) d x-x(1-x y) d y=0$ becomes exact on multiplication by

A.	$\frac{1}{x}$
C.	$\frac{1}{x^{3}}$

B.	$\frac{1}{x^{2}}$
D.	$\frac{1}{x^{4}}$

543) If the $\mathrm{DE} f(x, y) d x+x \sin y d y=0$ is exact then $f(x, y)$ equals
A. $\cos y$
B. $\quad-\cos (y)+x^{2}$
C. $-\sin y$
D. $\quad \operatorname{Sin}(\mathrm{y})+\mathrm{x}$
544) The differential equation $x \frac{d y}{d x}=x-y$ is
A. Exact
B. Linear
C. Homogeneous
D. All of above
545) The general solution of the equation $x^{\prime}+5 x=3$ is

B.	$x(t)=3+C \sin 5 t$
D.	$x(t)=C \cos 3 t$

A.	$x(t)=\frac{3}{5}+e^{-5 t}$
C.	$x(t)=\frac{3}{5}+C e^{-5 t}$

is

B.	$x(t)=\frac{1}{8}+\frac{1}{2} e^{-6 t}-\frac{5}{8} e^{-8 t}$
D.	$x(t)=4-e^{-2 t}+3 e^{-8 t}$

A. $x(t)=\frac{1}{8}+\frac{1}{2} e^{6 t}-\frac{5}{8} e^{8 t}$
D
C. $x(t)=4-e^{2 t}+3 e^{8 t}$
$-6 y=0$ are
A. $e^{-3 x}$ And $e^{2 x}$
B. $\quad e^{-2 x}$ And $e^{3 x}$
C. e^{-x} And $e^{6 x}$
D. $e^{-6 x}$ And e^{x}
548) A particular solution for the differential equation $y^{\prime \prime}+2 y^{\prime}+y=3-2 \sin x$ is
A. $A+B \sin x$
B. $\quad A+B x^{2}+C \cos x+D \sin x$
C. $\quad A+B x \cos x+C x \sin x$
D. $\quad A+B \cos x+C \sin x$
549) The solution of the initial value problem $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=0, y(1)=1, y^{\prime}(1)=-2$ is

A.	$\frac{5}{4} x^{-1}-\frac{1}{4} x^{3}$
C.	5

B. $\frac{1}{4} x+\frac{3}{4} x^{-3}$
C. $\frac{5}{4} e^{-x}-\frac{1}{4} e^{3 x}$
D. $\frac{1}{4} e^{x}+\frac{3}{4} e^{-3 x}$
550) The differential equation $x^{\prime \prime}+2 x^{\prime}-5 x=\sin t$ is equivalent to the system
A. $x^{\prime}=y, y^{\prime}=5 x-2 y+\sin t$
B. $x^{\prime}=2 x-5 y, y^{\prime}=\sin t$
C. $x^{\prime}=y, y^{\prime}=2 x-5 y+\sin t$
D. $x^{\prime}=5 x-2 y, y^{\prime}=\sin t$
551) The system of DE $x^{\prime \prime}=-\frac{y}{x^{2}+y^{2}}, y^{\prime \prime}=-\frac{y}{x^{2}+y^{2}}$ is equivalent to a $1^{\text {st }}$ order system consisting of
B. Two equations
A. One equation
D. Four equations
552) The series solution for the $\mathrm{DE} y^{\prime \prime}+x y^{\prime}+y=0$ is of the form $\sum_{n}^{\infty}=0 C_{n} X^{n}$ has recursion relation
A. $\quad C_{n+2}+C_{n+1}+C_{n}=0, n \geq 0$
B. $(c+2) C_{n+2}+C_{n}=0, n \geq 2$
C. $n c_{n+1}-c_{n}=0, n \geq 1$
D. $\quad C_{n}=0, n \geq 3$
553) The differential equation $x y^{\prime \prime}+(x-2) y^{\prime}+y=0$ has a solution of the form
A. $y=x^{2} \sum_{n=0}^{\infty} c_{n} x^{n}, c_{0} \neq 0$
B. $y=x^{1 / 2} \sum_{n=0}^{\infty} c_{n} x^{n}, c_{0} \neq 0$
C. $y=x^{3} \sum_{n=0}^{\infty} c_{n} x^{n}, c_{0} \neq 0$
D. $y=x^{-1} \sum_{n=0}^{\infty} c_{n} x^{n}, c_{0} \neq 0$
554) The solution of the $\mathrm{DE}(2 x-1) y^{\prime}+2 y=0$, can be represented as a power series $\sum_{n}^{\infty}=0 C_{n} X^{n}$ with radius of convergence equal to
A. 0
B. $1 / 2$
C. 1
D. ∞

The partial fraction decomposition of $\frac{s+4}{(s-1)^{2}\left(s^{2}+4\right)}$ is

	A.	Can be positive or negative integer or zero	B.	Can be positive or negative rational number or zero	
	C.	Must be positive integer	D.	Must be negative integer	
570)	When solving a 1-dimensional heat equation using a variable separable method we get the solution				C
	A.	k is positive	B.	k is 0	
	C.	k is negative	D.	k can be anything	
571)	$f(x, y)=\sin (x y)+x^{2} \ln (y)$. Find $f_{x y}$ at $\left(0, \frac{\pi}{2}\right)$				D
	A.	33	B.	0	
	C.	3	D.	1	
572)	$f(x, y)=x^{2}+y^{3} ; x=t^{2}+t^{3} ; y=t^{3}+t^{9}$ find $\frac{d f}{d t}$ at $\mathrm{t}=1$				D
	A.		B.	1	
	C.	-164	D.	164	
573)	D.E for $y=A \cos \alpha x+B \sin \alpha x$, where A and B are arbitrary constants is				B
	A.	$\frac{d^{2} y}{d x^{2}}+\alpha y=0$		$\frac{d^{2} y}{d x^{2}}-\alpha y=0$	
		$\frac{d^{2} y}{d x^{2}}-\alpha^{2} y=0$		$\frac{d^{2} y}{d x^{2}}+\alpha^{2} y=0$	
574)	The order of D.E is defined as				B
	A.	The highest degree of the variable	B.	The order of the highest derivative	
	C.	The power of variable in the solution	D.	None of these	
575)	A primitive of an ODE is				C
	A.	Its general solution	B.	Its particular solution	
	C.	Its complementary solution	D.	None of these	
576)	The solution of a D.E subject to a condition satisfied at one particular point is called				C
	A.	A boundary value problem	B.	A two-point boundary value problem	
	C.	An initial value problem	D.	A two point initial value problem	
577)	A general solution of an nth order D.E then				A
	A.	n can be zero	B.	n is any non-negative integer	
		n is any integer	D.	n is any natural number	
578)	The D.E $\frac{d y}{d x}=\frac{a x+b y+c}{a^{\prime} x+b^{\prime} y+c^{\prime}}$ is				C
		Homogeneous	B.	Non-Homogeneous	
	C.	Non-Linear	D.	None of these	
579)	The order of D.E where general solution is $C_{1} e^{x}+C_{2} e^{2 x}+C_{3} e^{3 x}+C_{4} e^{4 x}+C_{5}$, where $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, are arbitrary constant is				A
	A.		B.	4	
	C.	3	D.	7	
580)	The particular integral of D.E $\left(D^{2}-a^{2}\right) y-\operatorname{cosax}$				C
	A.	$-\frac{x}{2 a} \cos a x$	B.	$\frac{x}{2 a} \operatorname{sinax}$	
	C.	$-\frac{x}{2 a} \sin a x$	D.	None of these	
581)	The equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial u}{\partial z}$ where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are variable is a partial D.E of order and degree				C
	A.		B.	2,2	
			D.	None of these	
582)	If $f(x)=e^{2 x}, f^{\prime \prime \prime}(x)=$				C
	A.	$6 e^{2 x}$	B.	$\frac{e^{2 x}}{6}$	
	C.	$8 e^{2 x}$	D.	none of these	
583)	$\frac{d}{d x} 5^{x}=$				B

	C.	e	D.	none of these	
593)	$\frac{d}{d x}\left(\tan ^{-1} x-\cot ^{-1} x\right)=$				C
	A.	$\frac{2}{\sqrt{1+x^{2}}}$	B.	$-\frac{2}{1+x^{2}}$	
	C.	$\frac{2}{1+x^{2}}$	D.	none of these	
594)	If $f\left(\frac{1}{x}\right)=\tan x, f^{\prime}\left(\frac{1}{\pi}\right)=$				A
	A.	$-\pi^{2}$	B.	1	
	C.	$-\frac{1}{\pi^{2}}$	D.	none of these	
595)	If $f\left(\frac{1}{x}\right)=\frac{1}{x}$ Then a critical point of f is				B
	A.	-1	B.	0	
	C.	1	D.	none of these	
596)	$\int a^{\lambda x} d x=$				B
		$\frac{a^{\lambda x}}{\lambda}$	B.	$\frac{a^{\lambda x}}{\lambda \ln a}$	
	C.	$\frac{a^{2 x}}{\ln a}$	D.	none of these	
597)	$\int \frac{f^{\prime}(x)}{f(x)} d x=$				A
	A.	$\ln \|f(x)\|$	B.	$f^{\prime}(x)$	
	C.	$\ln \left\|f^{\prime}(x)\right\|$	D.	none of these	
598)	$\int \frac{1}{\sqrt{x+a}+\sqrt{x}} d x$ can be evaluated if				C
	A.	$x>0, a<0$	B.	$x<0, a<0$	
	C.	$x>0, a>0$	D.	none of these	
599)	$\int a^{x^{2}} x d x=$				B
	A.	$\frac{a^{x^{2}}}{\ln a}$	B.	$\frac{a^{x^{2}}}{2 \ln a}$	
	C.	$a^{x^{2}} \ln a$	D.	none of these	
600)	$\int e^{a x}\left[a f(x)+f^{\prime}(x)\right] d x=$				B
	A.	$e^{a x} f^{\prime}(x)$	B.	$e^{a x} f(x)$	

	C.	$a e^{a x} f^{\prime}(x)$	D.	none of these	
601)	$\int e^{x}[\sin x+\cos x] d x=$				C
	A.	$-e^{x} \sin x$	B.	$e^{x} \cos x$	
	C.	$e^{x} \sin x$		none of these	
602)	$\int_{1}^{2} a^{x} d x=$				B
	A.	$\left(a^{2}-a\right) \ln a$	B.	$\frac{\left(a^{2}-a\right)}{\ln a}$	
	C.	$\left(a^{2}-a\right) \log a$	D.	none of these	
603)	$\int \frac{1}{x \ln x}$				A
	A.	$\ln (\ln x)+c$	B.	$\ln x+c$	
	C.	$\ln x$		none of these	
604)	$\int \frac{x+2}{x+1} d x$				B
	A.	$\ln (x+1)$	B.	$x+\ln (x+1)$	
	C.	$\ln (x+1)-x$		none of these	
605)	$\int_{0}^{3} \frac{1}{x^{3}+9} d x$				C
		$\frac{\pi}{4}$	B.	$\frac{\pi}{2}$	
		$\frac{\pi}{12}$		none of these	
606)	$\int e^{x}\left[\frac{1}{x}+\ln x\right] d x=$				A
	A.	$e^{x} \ln x$	B.	$e^{x} \frac{1}{x}$	
	C.	$-e^{x} \frac{1}{x}$	D.	none of these	
607)	$\int e^{x}\left[\frac{1}{x}-\frac{1}{x^{2}}\right] d x=$				A
	A.	$e^{x} \frac{1}{x}$	B.	$e^{x} \ln x$	
	C.	$e^{x} \frac{1}{x^{2}}$		none of these	
608)	If $x<0, y>0$ then the point $P(-x,-y)$ lies in the quadrant				C
	A.	II	B.	II	

Discipline: \qquad

	C.			none of these	
609)	The centroid of a triangle divides each median in the ratio of				B
	A.	1:2	B.	2:1	
	C.	1:1		none of these	
610)	If x and y have opposite signs then the point $P(x, y)$ lies in the quadrants				A
			B.	I\&III	
	C. II\&IV			none of these	
611)	The two intercepts form of the equation of a straight line is				C
	A.	$y=m x+c$	B.	$y-y_{1}=m\left(x-x_{1}\right)$	
		$\frac{x}{a}+\frac{y}{b}=1$		none of these	
612)	The slope of the line perpendicular to $a x+b y+c=0$ is				A
		$\frac{b}{a}$		- $\frac{a}{b}$	
		$\frac{a}{b}$		none of these	
613)	The line $2 x+y+2=0$ and $6 x+3 y-8=0$ are				B
	A. Perpendicular B.			Parallel	
	C. Non coplanar D.			none of these	
614)	If three lines pass through one common point then the lines are called				C
	A. Parallel		B.	Congruent	
	C. Concurrent D.			none of these	
615)	$2 x+y+k=0$ (k being a parameter) represent				B
	A.	Two line	B.	Family of lines	
	C.	Intersecting lin		none of these	
616)	Equation of vertical line through (-5,3) is				A
	A.	$x+5=0$	B.	$x-5=0$	
	C.	$x+3=0$	D.	none of these	
617)	Equation of line through ($-8,5$) and having slope undefined is				C
	A.	$x+8=0$	B.	$x-5=0$	
	C.	$x-8=0$		none of these	
618)	Two lines l_{1} and l_{2} with the slope m_{1} and m_{2}, are perpendicular if				A
	A.	$m_{1} m_{2}=-1$	B.	$m_{1} m_{2}=1$	
	C.	$m_{1} m_{2}=0$		none of these	
619)	Two lines represented by $a x^{2}+2 h x y+b y^{2}=0$ are real and distinct if				C
	A.	$h^{2}-a b<0$	B.	$h=0$	
	C.	$h^{2}-a b>0$	D.	none of these	

620) Two lines represented by $a x^{2}+2 h x y+b y^{2}=0$ are coincident if
A. $h^{2}-a b=0$
B. $h^{2}-a b<0$
C. $h^{2}-a b>0$
D. none of these
621) The lines $3 y=2 x+5$ and $3 x+2 y-8=0$ intersect at an angle of

A.	$\frac{\pi}{3}$

B. $\frac{\pi}{2}$
C. Intersect at an angle
D. none of these
622) The perpendicular distance of the line $3 x+4 y+10=0$ from the origin is
A. 0
B. 1
C. 2
D. none of these
623) The lines represented by $a x^{2}+2 h x y+b y^{2}=0$ are orthogonal if
A. $a-b=0$
B. $a+b=0$
C. $\quad a+b>0$
D. none of these
624) The distance of the point $(3,7)$ from the y-axis is
A. 3
B. -7
C. -3
D. none of these
625) The equation $9 x^{2}+24 x y+16 y^{2}=0$ represents a pair of lines which are
A. Real and distinct
B. imaginary
C. Real and coincident
D. none of these
626) If a straight line is parallel to x -axis then its slope is
A. -1
B. 0
C. undefined
D. none of these
627) Intercept form of equation of line is

A.	$\frac{x}{a}+\frac{y}{b}=1$
C.	$\frac{x}{a}+\frac{y}{b}=0$

B.	$\frac{x}{a}-\frac{y}{b}=0$
D.	none of these

628) The perpendicular distance of a line $12 x+5 y=7$ from $(0,0)$ is

A.	$\frac{1}{13}$
C.	$\frac{13}{7}$

B.	$\frac{7}{13}$
D.	none of these

629) Line passes through the point of intersection of two lines l_{1} and l_{2} is
A. $k_{1} l_{1}=k_{2} l_{2}$
B. $l_{1}+k l_{2}=2$
C. $\quad l_{1}+k l_{2}=0$
D. none of these
630) If $2 x+5 y+k=0$ and $k x+10 y+3=0$ are parallel lines then $k=$

	A.	25	B.	2	
	C.	3	D.	none of these	
631)	The solution of $a x+b y<c$ is				B
	A.	Closed half plane	B.	Open half plane	
	C.	parabola	D.	none of these	
632)	The symbols used for inequality are				C
	A.	1	B.	2	
	C.	4	D.	none of these	
633)	$a x+b y<c$ is not a linear inequality if				A
	A.	a $a, 0, b=0$	B.	$a \neq 0, b \neq 0$	
	C.	$a=0, b \neq 0$	D.	none of these	
634)	$x=0$ is the solution of the inequality				B
	A.	$x<0$	B.	$2 x+3>0$	
	C.	$x+4<0$	D.	none of these	
635)	The angle inscribed in a semi-circle is				C
		$\frac{\pi}{3}$	B.	π	
		$\frac{\pi}{2}$	D.	none of these	
636)	The number of tangents that can be drawn from a point $P\left(x_{1}, y_{1}\right)$ to a circle are				B
	A.	One	B.	Two	
	C.	More than two	D.	none of these	
637)	Congruent chords of a circle are equi-distant form the				A
	A.	Center	B.	Origin	
	C.	Tangent	D.	none of these	
638)	$x=a \cos t, y=a \sin t$ are the parametric equations of				C
		parabola	B.	ellipse	
	C.	circle	D.	none of these	
639)	$x=a \sec t, y=b \tan t$ are the parametric equations of				B
		parabola	B.	hyperbola	
	C.	ellipse	D.	none of these	
640)	The parabola $y^{2}=-12 x$ opens				C
		upwards	B.	downwards	
	C.	leftward	D.	none of these	
641)	In the case of an ellipse it is always true that				A
	A.	$a^{2}>b^{2}$	B.	$a^{2}<b^{2}$	
	C.	$a^{2}=b^{2}$	D.	none of these	

642)	If the associative law holds in a set, the set				B
	A.	Is a group	B.	May be a group	
	C.	Is not a group	D.	none of these	
643)	An example of a group under multiplication is the set of				C
	A. Integers C. $4^{\text {th }}$ roots of unity		B.	Whole numbers	
			D.	none of these	
644)	A group				A
	A. Is closed set		B.	May not be closed	
	C. May be an empty set		D.	none of these	
645)	Which one is not true				D
	A.	$Z \subset Q$	B.	$Q \subset R$	
	C.	$R \subset C$	D.	none of these	
646)	An example of a vector space is				B
	A.	$Q(R)$	B.	$R(Q)$	
	C.	$Q^{\prime}(Q)$	D.	none of these	
647)	A rational number				C
	A.	May not be a real number	B.	Is not a real number	
	C.	Is a real number	D.	none of these	
648)	A real number				C
	A.	Is a rational number	B.	Is not an irrational number	
	C.	May be an irrational number	D.	none of these	
649)	The set of real numbers is a subset of				C
	A.	Z	B.	Q	
	C.	C	D.	none of these	
650)	$[0,1]=$				D
	A.	[1,2]	B.	[0, ∞ [
	C.]- $-0,0$	D.	none of these	
651)	$a_{n}=\frac{2}{\sqrt{n^{2}+3}}$ is the nth term of a sequence. The sequence $\left(a_{n}\right)_{n=1}^{\infty}$				A
	A.	Converges	B.	Diverges	
	C.	May or may not converge	D.	None of these	
652)	$a_{n}=\frac{\sqrt{n+1}}{n}$ is the nth term of a sequence. The sequence $\left(a_{n}\right)_{n=1}^{\infty}$				B
	A.	Diverges	B.	Converges	
	C.	May or may not converge	D.	None of these	

653)	$a_{n}=\frac{1+(-1)^{n}}{n}$ is the nth term of a sequence. The sequence $\left(a_{n}\right)_{n=1}^{\infty}$				A
	A.	converges	B.	diverges	
	C.	may not converge	D.	None of these	
654)	$a_{n}=\frac{5^{n}}{(n+1)^{2}}$ is the $n t h$ term of a sequence. The sequence $\left(a_{n}\right)_{n=1}^{\infty}$				B
	A.	converges	B.	diverges	
	C.	may not diverge	D.	None of these	
655)	The series $\sum_{1}^{\infty} \frac{5 n+2}{3 n-1}$				B
	A.	converges	B.	diverges	
	C.	may not diverge	D.	None of these	
656)	The series $\sum_{1}^{\infty} a_{n}$ converges if $\int_{1}^{\infty} f(x) d x$				B
	A.	Diverges	B.	Converges	
	C.	May not converges	D.	None of these	
657)	$\sum_{1}^{\infty} a_{n}$ diverges if $\int_{1}^{\infty} f(x) d x$--------				A
	A.	Diverges	B.	Converges	
	C.	May not diverge	D.	None of these	
658)	$\sum \frac{1}{n^{p}}$ is convergent for -----				B
	A.	$p<1$	B.	$p>1$	
	C.	$p=1$	D.	None of these	
659)	$\sum \frac{1}{n^{p}}$ is divergent for				A

\begin{tabular}{|c|c|c|c|c|c|}
\hline 681) \& \begin{tabular}{|l|}
\\
T \\
\\
\hline A. \\
\\
\\
\hline C. \\
\hline
\end{tabular} \& invers of the matrix \(A=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right.\)
\(A^{-1}=\left[\begin{array}{ccc}-1 \& 3 \& -4 \\ \frac{1}{3} \& -1 \& \frac{5}{3} \\ \frac{2}{3} \& -1 \& \frac{4}{3}\end{array}\right]\)
\(A^{-1}=\left[\begin{array}{ccc}-1 \& 3 \& -4 \\ 3 \& -1 \& 2 \\ 2 \& -4 \& 1\end{array}\right]\) \& B. \& \(A^{-1}=\left[\begin{array}{ccc}-1 \& 3 \& -4 \\ 3 \& -1 \& \frac{5}{3} \\ \frac{2}{3} \& -4 \& 9\end{array}\right]\)
None of these \& A \\
\hline 682) \& W \& A 0 of the following is diagon
\(A=\left[\begin{array}{lll}1 \& 0 \& 0 \\ 0 \& 2 \& 6 \\ 0 \& 8 \& 0\end{array}\right]\)

$=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1\end{array}\right]$ \& B. \& $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 6 & 8 & 0\end{array}\right]$
None of these \& D

\hline 683) \& \multicolumn{4}{|l|}{If a $m \times n$ matrix B is obtain from a $m \times n$ matrix A by a finite number of elementary row and column operations, then B is said to be \ldots to A.} \& B

\hline 684) \& \multicolumn{4}{|l|}{Every nonzero $m \times n$ matrix is equivalent to a $m \times n$ matrix $D=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$. Then D is called ... form of A.} \& C

\hline 685) \& \multicolumn{4}{|l|}{A system of m linear equations $A x=B$ in n unknowns has a unique solution if and only if $\operatorname{rank}(A)=\operatorname{rank}(B)=$} \& A

\hline 686) \&	If
A.	
C.	\& A and B be $m \times n$ matrices o

\[
$$
\begin{aligned}
& (a+b) A=a A+b A \\
& a(b A) \neq(a b) A
\end{aligned}
$$

\] \& B. \& | F. Then $a(A+B) \neq a A+a B$ |
| :--- |
| None of these | \& A

\hline 687) \& \multicolumn{4}{|l|}{If the matrices A and B are conformable for addition and multiplication, then} \& C

\hline
\end{tabular}

728)	$\sum_{k=1}^{n}\left\|x_{k} y_{k}\right\| \leq\left(\sum_{k=1}^{n}\left\|x_{k}\right\|^{2}\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n}\left\|y_{k}\right\|^{2}\right)^{\frac{1}{2}}$, it is called				B
	A.	Cauchy inequality	B.	Cauchy-Schwarz inequality	
	C.	Minkowski's inequality	D.	None of these	
729)	Which of the following is a system of nonhomogeneous linear equations?				C
	A.	$\left\lvert\, \begin{aligned} & x_{1}+2 x_{2}=1 \\ & 2 x_{1}+x_{2}=2\end{aligned}\right.$		$x_{1}-6 x_{2}=0$ $6 x_{1}+x_{2}=20$	
	C.	$\begin{aligned} & x_{1}+2 x_{2}=0 \\ & 2 x_{1}+x_{2}=0 \end{aligned}$		None of these	
730)	If $x_{1}-x_{2}+2 x_{3}=0,4 x_{1}+x_{2}+2 x_{3}=1, x_{1}+x_{2}+x_{3}=-1$, then				A
		$x_{1}=1, x_{2}=-1, x_{3}=-1$	B.	$x_{1}=0, x_{2}=1, x_{3}=-1$	
		$x_{1}=1, x_{2}=1, x_{3}=1$	D.	None of these	
$\begin{array}{\|l\|} \hline 731) \\ 732) \\ 733) \\ \hline \end{array}$	The system $A x=0$ of m equations and n unknowns has nontrivial solution if and only if $\operatorname{rank}(A)----\operatorname{rank}\left(A_{b}\right)$.				B
	A.	$=$	B.	<	
	C.	>	D.	None of these	
734)	If $c \neq 2 a-3 b$ then this system of linear equations $2 x_{1}-x_{2}+3 x_{3}=a, 3 x_{1}+x_{2}-5 x_{3}=b$, $-5 x_{1}-5 x_{2}+21 x_{3}=c$ is called				B
		is consistent	B.	is inconsistent	
	C.	A and B both	D.	None of these	
735)	This matrix $\left[\begin{array}{lll\|l}1 & 2 & 4 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 0\end{array}\right]$ has				B
	A. \|trivial solutions B. nontrivial				
	C. no solution D			None of these	
736)	For any matrix A the collection $\{x: A x=0\}$ is called ----- of A				B
	A. rank			solution space	
	C. both A and B		D. None of these		
737)	Which of the following is a linear equation in the variables x, y, z ?				A
	A.	$x-2 y=0$	B.	$x+\cos y=z$	
	C.	$\sin x+\cos y+\tan z=0$	D.	None of these	
738)	If a system of 2 equations and 2 unknown has no solution, then the graph looks like				B
		intersecting lines	B.	non intersecting lines	
	C.	same lines	D.	None of these	
739)	In Gauss-Jordan elimination method, we reduce the augmented matrix into				B
		Echelon form	B.	Reduced echelon form	

	C. obeys Newton's law of viscosity	D.	None of these	
751)	If the Reynolds number is less than 2000, the flow in a pipe is			B
	A. Turbulent	B.	Laminar	
	C. Transition	D.	None of these	
$\begin{aligned} & 752) \\ & 00) \end{aligned}$	The continuity equation is the result of application of the following law to the flow field			A
	A. Conservation of mass	B.	Conservation of energy	
	C. Newton's second law of motion	D.	None of these	
753)	When a problem states "The velocity of the water flow in a pipe is $20 \mathrm{~m} / \mathrm{s}$ ", which of the following velocities is it talking about?			B
	A. RMS velocity	B.	Average velocity	
	C. Relative velocity	D.	None of these	
754)	Power set topology is ---------- then any other.			A
	A. finer	B.	coarser	
	C. weaker topology	D.	None of these	
755)	Let $\tau_{1} \& \tau_{2}$ are two topologies on $\mathrm{X} \tau_{1} \subseteq \tau_{2}$ then τ_{1} is said to -------------			C
	A. stronger topology	B.	finer topology	
	C. coarser topology	D.	None of these	
756)	Let $\tau_{1} \& \tau_{2}$ are two topologies on $\mathrm{X} \tau_{1} \nsubseteq \tau_{2}$ then they are said to be -------------			A
	A. In compare able topology	B.	Compare able topology	
	C. Finer topology	D.	None of these	
757)	$\tau=\{\varphi, X\}$ be indiscrete topological space $A \subseteq X$ then relative topology on A is -----.101			C
	A. $\tau_{A}=\{\varphi, X\}$	B.	$\tau_{A}=\{X\}$	
	C. $\tau_{A}=\{\varphi, A\}$	D.	None of these	
758)	1) $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\} \mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\tau=\{\varphi,\{b, c\}, X\}$ then \bar{A} is equal to $--\cdots-$ al----- $^{\text {. }}$			B
	A. $\{\mathrm{b}\}$	B.	X	
	C. $\{a\}$	D.	None of these	
759)	2) Let (X, τ) be a topological space and $A \subseteq X$ then A is closed iff			C
	A. $\overline{\bar{A}}=\bar{A}$ C	B.	$\overline{\bar{A}}=A$	
	C. $A=\bar{A}$	D.	None of these	
760)	Interior of A is union of all open set contain in -----------			B
	A. \bar{A}	B.	A	
	C. A^{d}	D.	None of these	
761)	3) Let ($\mathrm{X}, \tau)$ be a topological space and $A \subseteq X$ then A is open iff ----------------.			A
	A. $A^{\circ}=A$ c.	B.	$\overline{\bar{A}}=\bar{A}$	
	C. $A^{\circ}=\bar{A}$	D.	None of these	
762)	Let (X, τ) be a topological space Ext A is the largest open set contain in ---------.			B
	A. X	B.	\bar{A}	
	C. A°	D.	None of these	
763)	$\operatorname{Int}(\mathrm{X}-\mathrm{A})$ is equal to			A
	A. X	B.	Int(A)	
	C. $\operatorname{Ext}(\mathrm{A})$	D.	None of these	

795)	The function $f: R^{+} \rightarrow R$ defined by $f(x)=\ln x$ is		C
	A. decreasing	B. constant	
	C. increasing	D. None of these	
796)	The function $f: R \rightarrow R^{+}$defined by $f(x)=e^{x}$ is		A
	A. one to one	B. not one to one	
	C. decreasing	D. None of these	
797)	$\int_{0}^{\pi / 4} \theta \sec ^{2} \theta d \theta=$		C
	A. $\frac{\pi}{4}+\frac{1}{2} \ln 2$	B. $\frac{\pi}{4}+\log 2$	
	C. $\frac{\pi}{4}+\frac{1}{2} \ln 2$	D. None of these	
798)	The partial differential equations in $p+q=z^{2}$, is ------		A
	A. of order 1 and is linear	B. of order 1 and is not linear	
	C. of order 2 and is not linear	D. None of these	
799)	The vertex of the equation $y^{2}=4 a x$ is?		C
	A. $(1,1)$	B. $(2,2)$	
	C. $(0,0)$	D. None of these	
800)	What is the axis of the parabola $y^{2}=4 a x$?		B
	A. $\mathrm{x}=0$	B. $\mathrm{y}=0$	
	C. $\mathrm{x}=\mathrm{a}$	D. None of these	
801)	If $\sum a_{k}$ diverges then		A
	A. $\sum\left\|a_{k}\right\|$ diverges	B. $\sum\left\|a_{k}\right\|$ converges	
	C. $\sum\left\|a_{k}\right\|$ absolutely converges	D. None of these	
802)	Which of the following statement is not true?		B
	A. Any sequence has a unique limit.	B. The set $S=\{0,1\}$ has exactly two accumulation points.	
	C. There exist a sequence of rational numbers that has an irrational limit.	D. None of these	
803)	The continuity equation is the result of application of the following law to the flow field		A
	A. Conservation of mass	B. Conservation of energy	
	C. Newton's second law of motion D. None of these		
804) The series converges absolutely if			A
	A. $\|\|x\|<1$ B	3. $\|\|x\|>1$	
	C. both A and B D	D. None of these	
805)The series diverges absolutely if			B
	A. $\|\|x\|<1$	3. $\|\|x\|>1$	
	C. both A and B D	D. None of these	
	If the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges for $x=x_{1}$, then it converges absolutely for all x such that		A
	A. $\left\|\|x\|<\left\|x_{1}\right\|\right.$ B	B. $\left\|\|x\|>\left\|x_{1}\right\|\right.$	
	C. $\left\|\|x\|=\left\|x_{1}\right\| \quad\right.$ D	D. None of these	

A. $\quad T_{1}(u) \neq T_{2}(u)$ for all $u \in U$

B.	$T_{1}(u)=T_{2}(u)$ for all $u \in U$
D.	$T_{1}(u)>T_{2}(u)$ for all $u \in U$

826) For any field $F, F^{n} \cong F^{m}$ if and only if
A. $n=m$
B. $n \neq m$
C. both A and B
D. None of these
827) Two finite dimensional vector spaces U and V over F are isomorphic and $\operatorname{dim} U=5$ then
A. $\operatorname{dim} V=5$
B. $\operatorname{dim} V=4$
C. $\operatorname{dim} V=3$
D. None of these
828)There is no one-one onto linear transformation from
A. R^{2} to R^{3}
B. R^{3} to R^{4}
C. both A and B
D. None of these
829)The vectors $(1,-2,3),(5,6,-1)$ and $(3,2,1)$ are
A. Linearly independent
B. Linearly dependent
C. Both A and B
D. None of these
830)The vectors $(1,2,2,-1),(4,9,9,-4)$ and $(5,8,9,-5)$ are
A. Linearly independent
B. Linearly dependent
C. Both A and B
D. None of these
828) The polynomials $p_{1}=1-x, p_{2}=5+3 x-2 x^{2}$ and $p_{3}=1+3 x-x^{2}$ are
A. Linearly independent
B. Linearly dependent
C. Both A and B
D. None of the
832)A finite set that contains 0 is
A. Linearly independent
B. Linearly dependent
C. Both A and B
D. None of these
833)A set of vectors $\{x, \sin x\}$ is
A. Linearly independent
B. Linearly dependent
C. Both A and B
D. None of these
834)A set of vectors $\{\sin 2 x, \sin x \cos x\}$ is
A. Linearly independent
B. Linearly dependent
C. Both A and B
D. None of these
829)

For what value(s) of h will y be in the subspace of R^{3} spanned by v_{1}, v_{2}, v_{3} if $v_{1}=\left(\begin{array}{c}1 \\ -1 \\ -2\end{array}\right), v_{2}=$ $\left(\begin{array}{c}5 \\ -4 \\ -7\end{array}\right), v_{3}=\left(\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right)$ and $y=\left(\begin{array}{c}-4 \\ 3 \\ h\end{array}\right)$
A. $h=-5,5$
B. $h=5$
C. $h=-1,0,-1$
D. None of these
836)The set of all solutions of the homogenous equation $A x=0$ is known as
A. Null set
C. Non trivial
B. trivial solution
7) $\operatorname{Null}(A)=\{0\}$ if and only if the equation $A x=0$ has only the
A. \quad Null set
B. trivial solution
C. Non trivial
D. None of these
838) $\operatorname{Null}(A)=\{0\}$ if and only if the linear transformation $x \rightarrow A x$ is

853) If $u_{1}=(3,-1), u_{2}=(4,5)$ and $u_{3}=(-4,7)$ then the set $\left\{u_{1}, u_{2}, u_{3}\right\}$ is
A. Linearly independent
B. Linearly dependent
C. Both A and B
D. None of these
854) If $p_{1}=3-2 x+x^{2}$ and $p_{2}=6-4 x+2 x^{2}$ then the set $\left\{p_{1}, p_{2}\right\}$ is
855) If $A=\left(\begin{array}{cc}-3 & 4 \\ 2 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}3 & -4 \\ -2 & 0\end{array}\right)$ in M_{22}, then the set $\{A, B\}$ is
A. Linearly independent
B. Linearly dependent
C. Both A and B
D. None of these
856) The vectors $(3,8,7,-3),(1,5,3,-1),(2,-1,2,6),(4,2,6,4)$ in R^{4} are
A. Linearly independent
B. Linearly dependent
C. Both A and B
D. None of these
857)The Wronskian of $f_{1}=\sin x, f_{2}=\cos x$ and $f_{3}=x \cos x$ is
A. $2 \sin x$
B. $\sin 2 x$
C. zero
D. None of these
858)The Wronskian of $f_{1}=1, f_{2}=x$ and $f_{3}=e^{x}$ is
A. $x e^{x}$
B. e^{x}
C. zero
D. None of these
859)The Wronskian of $f_{1}=1, f_{2}=x$ and $f_{3}=x^{2}$ is
A. 2
C. Zero
B. $\quad e^{x}$
D. None of these
860) $_{\text {If }}\left(\lambda,-\frac{1}{2},-\frac{1}{2}\right),\left(-\frac{1}{2}, \lambda,-\frac{1}{2}\right),\left(-\frac{1}{2},-\frac{1}{2}, \lambda\right)$ are linearly independent then

A.	$\lambda=1,-\frac{1}{2}$	B.		$\lambda=1,-1$
C.	$\lambda=-\frac{1}{2}$	D.	None of these	

861) The vectors $(-3,7)$ and $(5,5)$ in R^{2} form
A. Basis for R^{2}
B. Linearly dependent set
C. Infinite set
D. None of these
862) If W is subspace of a finite dimensional vector space V then W is
A. finite dimensional
B. Infinite dimensional
C. \quad Basis for V
D. None of these
863) v_{3} can be added to linearly independent sets $(1,-2,3),(0,5,-3)$ to form basis then

A.	$v_{3}=(0,0,1)$

B. $\quad v_{3}=(0,0,0)$
C. Both A and B
D. None of these
864) The area of the triangle formed by the tangent and the normal to the parabola $y^{2}=4 a x$ both drawn at the same end of the latus rectum and the axis of the parabola is

879) If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$, then one of the values of k is
A. $1 / 8$
B. 8
C. 4
D. $1 / 4$
880) If the point $P(4,-2)$ is one end of the focal chord $P Q$ of the parabola $y^{2}=x$, then the slope of the tangent at Q is
A. $-1 / 4$
B. $1 / 4$
C. 4
D. -4
881) The line $y=m x+c$ intersects the circle $x^{2}+y^{2}=a^{2}$ at the most of \qquad
A. 1

B.	2
D.	4

C. 3
882) The eccentricity of an ellipse is
A. $\quad e=1$
B. $\quad e<1$
C. $e>1$
D. $0<e<1$
883) The perpendicular distance from the point (3,-4) to the line $3 x^{2}-4 x+10=0$
A. 7
C. 9

B.	8
D.	10

884) What is the length of latus rectum If the distance between vertex and focus is 3 ?
A. 8
C. 4
B. 12
D. None of these
885) The line perpendicular to the tangent line is called

B.	secant line
D.	derivative

886) The point of a parabola which is closest to the focus is the \qquad of the parabola.
887) The center of the circle $4 x^{2}+4 y^{2}-8 x+12 y-25=0$ is ?

A.	$(2,-3)$
C.	$(-4,6)$

B.	$(-2,3)$
D.	$(4,-6)$

888) Which point of a parabola is closest to the focus is?
A. directrix
B. vertex
C. eccentricity
D. latus rectum
889) If the distance between vertex and focus is 3 , then the length of latus rectum is?
A. 6
B. 8
C. 10
D. 12
890) The focus of the parabola $y^{2}=-8(x-3)$ is?

A.	$(0,0)$
C.	$(0,1)$

B.	$(1,0)$
D.	$(1,1)$

891) If the discriminant of a conic is $h^{2}-a b=0$, then it represents a
A. circle
B. parabola
C. hyperbola
D. ellipse
892) The radius of the circle $4 x^{2}+4 y^{2}-8 x+12 y-25=0$ is?

A.	$\sqrt{57}$
C.	$\sqrt{77}$

B.	$\sqrt{67}$
D.	$\sqrt{87}$

893) A line which is perpendicular to base of cone and passes through vertex of cone is called of cone

A.	rulings	B.	nap
C.	vertex	D.	axis

894) If the cutting plane is parallel to the generator of the cone and cut only one nap is called

A.	Circle	B.	hyperbola
C.	parabola	D.	ellipse

895) The perpendicular distance from the point (3, -4) to the line $3 x-4 y+10=0$
A. 7
B. 8
C. 9
D. 10
896) The locus of the point from which the tangent to the circles $x^{2}+y^{2}-4=0$ and $x^{2}+y^{2}-8 x+15=0$ are equal is given by the equation
A. $8 x+19=0$
B. $8 x-19=0$
C. $4 x-19=0$
D. $4 x+19=0$
897) The number of tangents that can be drawn from $(1,2)$ to $x^{2}+y^{2}=5$ is
A. 0
C. 2

B.	1
D.	More than 2

898) The equation of parabola whose focus is $(3,0)$ and directrix is $3 x+4 y=1$ is
A. $16 x^{2}-9 y^{2}-24 x y-144 x+8 y+224=0$
B. $16 x^{2}+9 y^{2}-24 x y-144 x+8 y-224=0$
C. $16 x^{2}+9 y^{2}-24 x y-144 x-8 y+224=0$
D. $16 x^{2}+9 y^{2}-24 x y-144 x+8 y+224=0$
899) The center of the ellipse $(x+y-2)^{2} / 9+(x-y)^{2} / 16=1$ is
A. $(0,0)$
B. $(0,1)$
C.
$(1,0)$
D. $(1,1)$
900) The equation of parabola with vertex at origin the axis is along x-axis and passing through the point $(2,3)$ is
A. $y^{2}=9 x$
B. $y^{2}=9 x / 2$
C. $y^{2}=2 x$
D. $y^{2}=2 x / 9$
901) At what point of the parabola $x^{2}=9 y$ is the abscissa three times that of ordinate
A. $(1,1)$
B. $(3,1)$
C. $(-3,1)$
D. $(-3,-3)$
902) A man running a race course notes that the sum of the distances from the two flag posts from him is always 10 meter and the distance between the flag posts is 8 meter. The equation of posts traced by the man is
A. $x^{2} / 9+y^{2} / 5=1$
B. $x^{2} / 9+y 2 / 25=1$

	C.	$x^{2} / 5+y^{2} / 9=1$	D.	$x^{2} / 25+y^{2 / 9}=1$	
903)	In an ellipse, the distance between its foci is 6 and its minor axis is 8 then its eccentricity is				C
	A.	4/5	B.	$1 / \sqrt{ } 52$	
	C.	3/5	D.	1/2	
904)	If the length of the tangent from the origin to the circle centered at $(2,3)$ is 2 then the equation of the circle is				C
	A.	$(x+2)^{2}+(y-3)^{2}=3^{2}$	B.	$(x-2)^{2}+(y+3)^{2}=3^{2}$	
	C.	$(x-2)^{2}+(y-3)^{2}=3^{2}$	D.	$(x+2)^{2}+(y+3)^{2}=3^{2}$	
905)	The parametric representation ($\left.2+t^{2}, 2 t+1\right)$ represents				A
	A.	a parabola	B.	a hyperbola	
	C.	an ellipse	D.	a circle	
906)	If a parabolic reflector is 20 cm in diameter and 5 cm deep then the focus of parabolic reflector is				C
	A.	(0 0)	B.	(0 5)	
	C.	(50)	D.	(5 5)	
907)	The parametric coordinate of any point of the parabola $y^{2}=4 a x$ is				C
	A.	(-at $\left.{ }^{2},-2 a t\right)$	B.	(-at $\left.{ }^{2}, 2 a t\right)$	
	C.	$\left(a \sin ^{2} t,-2 a \sin t\right)$	D.	$(a \sin t,-2 a \sin t)$	
908)	The equation of parabola with vertex $(-2,1)$ and focus $(-2,4)$ is				B
	A.	$10 y=x^{2}+4 x+16$	B.	$12 y=x^{2}+4 x+16$	
	C.	$12 y=x^{2}+4 x$	D.	$12 y=x^{2}+4 x+8$	
909)	The equation of a hyperbola with foci on the x -axis is				B
	A.	$x^{2} / a^{2}+y^{2} / b^{2}=1$	B.	$x^{2} / a^{2}-y^{2} / b^{2}=1$	
	C.	$x^{2}+y^{2}=\left(a^{2}+b^{2}\right)$	D.	$x^{2}-y^{2}=\left(a^{2}+b^{2}\right)$	
910)	The line $l x+m y+n=0$ will touches the parabola $y^{2}=4 a x$ if				A
	A.	$l n=a m^{2}$	B.	$l n=a m$	
	C.	$\ln =a^{2} m^{2}$	D.	$l n=a^{2} m$	

	C.	$1200 \mathrm{~cm}^{2}$	D.	$1021 \mathrm{~cm}^{2}$	
918)	If circular metal sheet is 0.65 cm thick and of 50 cm in diameter is melted and recast into cylindrical bar with 8 cm diameter then the length of bar will be				A
	A.	24.41 cm	B.	35.41 cm	
	C.	40.41 cm	D.	30.41 cm	
919)	If a cuboid is 3.2 cm high, 8.9 cm long and 4.7 wide then total surface area is				A
	A.	$170.7 \mathrm{~cm}^{2}$	B.	$180 \mathrm{~cm}^{2}$	
	C.	$205.7 \mathrm{~cm}^{2}$	D.	$325.8 \mathrm{~cm}^{2}$	
920)	By converting the $5.6 \mathrm{~m}^{2}$ into the cm^{2}, the answer will be				B
	A.	$0.0056 \mathrm{~cm}^{2}$	B.	$5600 \mathrm{~cm}^{2}$	
	C.	$56000 \mathrm{~cm}^{2}$	D.	$560 \mathrm{~cm}^{2}$	
921)	A rectangular field is 40 m long and 30 m wide. The perimeter of rectangular field is				D
	A.	$200 \mathrm{~m}^{2}$	B.	$180 \mathrm{~m}^{2}$	
	C.	$160 \mathrm{~m}^{2}$	D.	$140 \mathrm{~m}^{2}$	
922)	By converting the $0.96 \mathrm{~km}^{2}$ into m^{2} (meter square), the answer will be				B
	A.	9600m ${ }^{2}$	B.	960m ${ }^{2}$	

	C.	parallelogram	D.	trapezium	
928)	If the base of parallelogram is 19 cm and the height is 11 cm then the area of parallelogram is				B
	A. $105 \mathrm{~cm}^{2}$		B.	$209 \mathrm{~cm}^{2}$	
	C.	110^{2}	D.	$170 \mathrm{~cm}^{2}$	
929)	If the width of rectangle is 10 cm lass than its length and its perimeter is 50 cm then the width of rectangle is				C
	A.	$58 \mathrm{~cm}{ }^{2}$	B.	$64 \mathrm{~cm}^{2}$	
	C.	$15 \mathrm{~cm}^{2}$	D.	$30 \mathrm{~cm}^{2}$	
930)	Converting the cm^{2} into the m^{2}, the $6.5 \mathrm{~cm}^{2}$ is equal to				A
	A.	$0.00065 \mathrm{~m}^{2}$	B.	$0.0065 \mathrm{~m}^{2}$	
	C.	$0.65 \mathrm{~m}^{2}$	D.	$65 \mathrm{~m}^{2}$	
931)	By converting the $78580 \mathrm{~m}^{2}$ into hectare(ha), the answer will be				B
	A.	785.80ha	B.	0.0007858ha	
	C.	0.07858ha	D.	78.580ha	
932)	If the length of a square field is 12 cm then the perimeter of square will be				A
	A.	$48 \mathrm{~cm}^{2}$	B.	$24 \mathrm{~cm}^{2}$	

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C. | $36 \mathrm{~cm}^{2}$ | D. | $50 \mathrm{~cm}^{2}$ | | |
| 933) | If the area of circle is $112 \mathrm{~m}^{2}$ then the circumference of the circle is | | | | |
| A. | $27.68 \mathrm{~m}^{2}$ | B. | $37.68 \mathrm{~m}^{2}$ | B | |
| C. | | | | | |

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | C. | $6080 \mathrm{~mm}^{2}$ | | |

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | C. | jar | | | |

	C.	dot product	D.	multiplication	
970)	What is the area of the parallelogram which represented by vectors $\mathrm{P}=2 \hat{\imath}+3 \hat{\jmath}$ and $\mathrm{Q} \overrightarrow{ }=\hat{\imath}+4 \hat{\jmath}$				A
	A.	5 units	B.	10 units	
	C.	15 units	D.	20 units	
971)	If it is not possible to draw any tangent from the point $(1 / 4,1)$ to the parabola $y^{2}=4 \mathrm{x} \cos \theta+\sin ^{2} \theta$, then θ belongs to				C
	A.	[- $\pi / 2 \pi / 2]$	B.	$[-\pi / 2 \pi / 2]-\{0\}$	
	C.	$(-\pi / 2 \pi / 2)-\{0\}$	D.	none of these	
972)					B
	The number of focal chord(s) of length $4 / 7$ in the parabola $7 y^{2}=8 x$ is				
	A.	1	B.	zero	
	C.	infinite	D.	none of these	
973)	The ends of line segment are $P(1,3)$ and $Q(1,1)$. R is a point on the line segment PQ such that $P R$: $R Q=1: \lambda$. If R is an interior point of parabola $y^{2}=4 x$, then				A
	A.	$\lambda \in(0,1)$	B.	$\lambda \in(-3 / 5,1)$	
	C.	$\lambda \in(1 / 2,3 / 5)$	D.	none of these	
974)	A set of parallel chords of the parabola $y^{2}=4 a x$ have their mid points on				C
	A.	any straight line through the vertex	B.	any straight line through the focus	
	C.	a straight line parallel to the axis	D.	another parabola	
975)	The equation of the line of the shortest distance between the parabola $\mathrm{y}^{2}=4 \mathrm{x}$ and the circle $x^{2}+y^{2}-$ $4 x-2 y+4=0$ is				A
	A.	$x+y=3$	B.	$x-y=3$	

	C.	$2 x+y=5$	D.	none of these	
976)	If normals are drawn from the extremities of the latus rectum of a parabola then normals are				B
	A.	parallel to each other	B.	perpendicular to each other	
	C.	intersect at the 450	D.	none of these	
977)	The triangle formed by the tangent to the parabola $y=x^{2}$ at the point whose abscissa is k where $k \in[1$, 2] the y-axis and the straight line $y=k^{2}$ has greatest area if k is equal to				C
	A.	1	B.	3	
	C.	2	D.	none of these	
978)	A parabola $y^{2}=4 a x$ and $x^{2}=4 b y$ intersect at two points. A circle is passed through one of the intersection point of these parabola and touch the directrix of first parabola then the locus of the centre of the circle is				D
	A.	straight line	B.	ellipse	
	C.	circle	D.	parabola	
979)	A circle with centre lying on the focus of the parabola $y^{2}=2 p x$ such that it touches the directrix of the parabola. Then a point of intersection of the circle and the parabola is				A
	A.	(p/2, p)	B.	(p/2, 2p)	
	C.	(-p/2, p)	D.	(-p/2, -p)	
980)	The point (1,2) is one extremity of focal chord of parabola $y^{2}=4 x$. The length of this focal chord is				B
	A.	2	B.	4	
	C.	6	D.	none of these	
981)	If AFB is a focal chord of the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ and $\mathrm{AF}=4, \mathrm{FB}=5$, then the latus-rectum of the parabola is equal to				A

988)	The set of complex numbers is				C
	A.	Not a group under ' + '	B.	Not a group under '+'	
	C.	Is a filed	D.	none of these	
989)	Which one is not a filed				A
	A.	Z	B.	Q	
	C.	R	D.	none of these	
990)	The set $\{1,-1, i,-i\}$				B
	A.	Not a group	B.	Is a cyclic group	
	C.	In not abelian group	D.	none of these	
991)	Which one is a semi group				B
	A.	P under ' + '	B.	N under ' + '	
	C.	P under ' ${ }^{\prime}$ '	D.	none of these	
992)	Over the field of real numbers,				D
	A.	Z is a vector space	B.	N is a vector space	
	C.	E is a vector space	D.	none of these	
993)	A group (G,*)				C
	A.	Is not closed under '*'	B.	May not be closed under '*'	
	C.	Is closed under '*'	D.	none of these	
994)	The set G is a group under ' + ' for				C
	A.	$G=N$	B.	$G=W$	
	C.	$G=Z$	D.	none of these	
995)	A set which is a group under '+',				B
	A.	is a group under "."	B.	is not a group under "."	
	C.	May not be a group under "."	D.	none of these	
996)	A cyclic group				C

